ETH Price: $2,423.15 (-8.37%)
 

Overview

ETH Balance

7 wei

Eth Value

Less Than $0.01 (@ $2,423.15/ETH)

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Withdraw Payment...230273622025-07-29 21:05:47186 days ago1753823147IN
0x72c0Df45...114FfAFAE
0 ETH0.000058781.64657365
Withdraw Payment...229688512025-07-21 16:46:59194 days ago1753116419IN
0x72c0Df45...114FfAFAE
0 ETH0.000179955.04057102
Withdraw Payment...220255212025-03-11 18:49:35326 days ago1741718975IN
0x72c0Df45...114FfAFAE
0 ETH0.0001432.90486419
Sweep Token220255182025-03-11 18:48:59326 days ago1741718939IN
0x72c0Df45...114FfAFAE
0 ETH0.000150022.89024387
Sweep Token220254892025-03-11 18:42:59326 days ago1741718579IN
0x72c0Df45...114FfAFAE
0 ETH0.000134752.57525491
Buy With Token220241752025-03-11 14:18:59326 days ago1741702739IN
0x72c0Df45...114FfAFAE
0 ETH0.000479322.57045366
Buy With Native220236992025-03-11 12:43:11326 days ago1741696991IN
0x72c0Df45...114FfAFAE
0.5 ETH0.000139020.74650343
Buy With Native220235662025-03-11 12:16:23326 days ago1741695383IN
0x72c0Df45...114FfAFAE
0.125 ETH0.000267791.4378335
Buy With Token220233922025-03-11 11:41:23326 days ago1741693283IN
0x72c0Df45...114FfAFAE
0 ETH0.000278881.27794576
Buy With Token220218372025-03-11 6:27:23327 days ago1741674443IN
0x72c0Df45...114FfAFAE
0 ETH0.000155640.71324145
Buy With Native220205922025-03-11 2:16:59327 days ago1741659419IN
0x72c0Df45...114FfAFAE
0.29 ETH0.000314281.9151988
Buy With Token220203122025-03-11 1:20:59327 days ago1741656059IN
0x72c0Df45...114FfAFAE
0 ETH0.0025638812.20735317
Buy With Token220190042025-03-10 20:58:23327 days ago1741640303IN
0x72c0Df45...114FfAFAE
0 ETH0.001095875.13452346
Buy With Token220175792025-03-10 16:10:47327 days ago1741623047IN
0x72c0Df45...114FfAFAE
0 ETH0.000524642.49809657
Buy With Token220133632025-03-10 2:03:23328 days ago1741572203IN
0x72c0Df45...114FfAFAE
0 ETH0.000130550.61170344
Buy With Native220125532025-03-09 23:20:11328 days ago1741562411IN
0x72c0Df45...114FfAFAE
0.5 ETH0.000419942.25461206
Buy With Native220121062025-03-09 21:50:35328 days ago1741557035IN
0x72c0Df45...114FfAFAE
0.43 ETH0.000198891.06791532
Buy With Token220110962025-03-09 18:28:11328 days ago1741544891IN
0x72c0Df45...114FfAFAE
0 ETH0.000457052.12765727
Buy With Token220110962025-03-09 18:28:11328 days ago1741544891IN
0x72c0Df45...114FfAFAE
0 ETH0.000471762.24631596
Buy With Native220109962025-03-09 18:07:59328 days ago1741543679IN
0x72c0Df45...114FfAFAE
0.099 ETH0.000511652.74718602
Buy With Token220097872025-03-09 14:04:23328 days ago1741529063IN
0x72c0Df45...114FfAFAE
0 ETH0.000555612.58647222
Buy With Native220092872025-03-09 12:23:35328 days ago1741523015IN
0x72c0Df45...114FfAFAE
0.09328727 ETH0.000167630.9
Buy With Token220081792025-03-09 8:40:11329 days ago1741509611IN
0x72c0Df45...114FfAFAE
0 ETH0.000214621.02190026
Buy With Token220058832025-03-09 0:58:47329 days ago1741481927IN
0x72c0Df45...114FfAFAE
0 ETH0.000219161.0043228
Buy With Token220049112025-03-08 21:43:35329 days ago1741470215IN
0x72c0Df45...114FfAFAE
0 ETH0.000219891.05406158
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Method Block
From
To
Deposit220236992025-03-11 12:43:11326 days ago1741696991
0x72c0Df45...114FfAFAE
0.495 ETH
Deposit220236992025-03-11 12:43:11326 days ago1741696991
0x72c0Df45...114FfAFAE
0.005 ETH
Deposit220235662025-03-11 12:16:23326 days ago1741695383
0x72c0Df45...114FfAFAE
0.12375 ETH
Deposit220235662025-03-11 12:16:23326 days ago1741695383
0x72c0Df45...114FfAFAE
0.00125 ETH
Deposit220205922025-03-11 2:16:59327 days ago1741659419
0x72c0Df45...114FfAFAE
0.2871 ETH
Deposit220205922025-03-11 2:16:59327 days ago1741659419
0x72c0Df45...114FfAFAE
0.0029 ETH
Deposit220125532025-03-09 23:20:11328 days ago1741562411
0x72c0Df45...114FfAFAE
0.495 ETH
Deposit220125532025-03-09 23:20:11328 days ago1741562411
0x72c0Df45...114FfAFAE
0.005 ETH
Deposit220121062025-03-09 21:50:35328 days ago1741557035
0x72c0Df45...114FfAFAE
0.4257 ETH
Deposit220121062025-03-09 21:50:35328 days ago1741557035
0x72c0Df45...114FfAFAE
0.0043 ETH
Deposit220109962025-03-09 18:07:59328 days ago1741543679
0x72c0Df45...114FfAFAE
0.09801 ETH
Deposit220109962025-03-09 18:07:59328 days ago1741543679
0x72c0Df45...114FfAFAE
0.00099 ETH
Deposit220092872025-03-09 12:23:35328 days ago1741523015
0x72c0Df45...114FfAFAE
0.09235439 ETH
Deposit220092872025-03-09 12:23:35328 days ago1741523015
0x72c0Df45...114FfAFAE
0.00093287 ETH
Deposit220036812025-03-08 17:35:23329 days ago1741455323
0x72c0Df45...114FfAFAE
0.3861 ETH
Deposit220036812025-03-08 17:35:23329 days ago1741455323
0x72c0Df45...114FfAFAE
0.0039 ETH
Deposit220036762025-03-08 17:34:23329 days ago1741455263
0x72c0Df45...114FfAFAE
0.08973727 ETH
Deposit220036762025-03-08 17:34:23329 days ago1741455263
0x72c0Df45...114FfAFAE
0.00090643 ETH
Deposit220031182025-03-08 15:41:23329 days ago1741448483
0x72c0Df45...114FfAFAE
2.2176 ETH
Deposit220031182025-03-08 15:41:23329 days ago1741448483
0x72c0Df45...114FfAFAE
0.0224 ETH
Deposit220028122025-03-08 14:39:47329 days ago1741444787
0x72c0Df45...114FfAFAE
0.11385 ETH
Deposit220028122025-03-08 14:39:47329 days ago1741444787
0x72c0Df45...114FfAFAE
0.00115 ETH
Deposit220015162025-03-08 10:18:59329 days ago1741429139
0x72c0Df45...114FfAFAE
0.1188 ETH
Deposit220015162025-03-08 10:18:59329 days ago1741429139
0x72c0Df45...114FfAFAE
0.0012 ETH
Deposit220012812025-03-08 9:31:47330 days ago1741426307
0x72c0Df45...114FfAFAE
0.297 ETH
View All Internal Transactions
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Minimal Proxy Contract for 0x08299e0fa3eb142122a8a7973888b0c990b097f8

Contract Name:
FlatPriceSale_v_4_0

Compiler Version
v0.8.21+commit.d9974bed

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;
// pragma abicoder v2;

import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/security/PullPaymentUpgradeable.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import "./Sale.sol";
import "../../interfaces/IOracleOrL2OracleWithSequencerCheck.sol";
import "../../config/INetworkConfig.sol";
import "../../utilities/AccessVerifier.sol";
import { IFeeLevelJudge } from "../../claim/IFeeLevelJudge.sol";
import "@openzeppelin/contracts/utils/Strings.sol";

/**
Allow qualified users to participate in a sale according to sale rules.

Management
- the address that deploys the sale is the sale owner
- owners may change some sale parameters (e.g. start and end times)
- sale proceeds are sent to the sale recipient

Qualification
- (deprecated) public sale: anyone can participate
- private sale: only users who have signatures issued by the access authority

Sale Rules
- timing: purchases can only be made
  - after the sale opens
  - after the per-account random queue time has elapsed
  - before the sale ends
- purchase quantity: quantity is limited by
  - per-address limit
  - total sale limit
- payment method: participants can pay using either
  - the native token on the network (e.g. ETH)
  - a single ERC-20 token (e.g. USDC)
- number of purchases: there is no limit to the number of compliant purchases a user may make

Token Distribution
- this contract does not distribute any purchased tokens

Metrics
- purchase count: number of purchases made in this sale
- user count: number of unique addresses that participated in this sale
- total bought: value of purchases denominated in a base currency (e.g. USD) as an integer (to get the float value, divide by oracle decimals)
- bought per user: value of a user's purchases denominated in a base currency (e.g. USD)

total bought and bought per user metrics are inclusive of any fee charged (if a fee is charged, the sale recipient will receive less than the total spend)
*/

// Sale can only be updated post-initialization by the contract owner!
struct Config {
	// the address that will receive sale proceeds (tokens and native) minus any fees sent to the fee recipient
	address payable recipient;
	// (deprecated) the merkle root used for proving access
	bytes32 merkleRoot;
	// max that can be spent in the sale in the base currency
	uint256 saleMaximum;
	// max that can be spent per user in the base currency
	uint256 userMaximum;
	// minimum that can be bought in a specific purchase
	uint256 purchaseMinimum;
	// the time at which the sale starts (users will have an additional random delay if maxQueueTime is set)
	uint256 startTime;
	// the time at which the sale will end, regardless of tokens raised
	uint256 endTime;
	// what is the maximum length of time a user could wait in the queue after the sale starts?
	uint256 maxQueueTime;
	// a link to off-chain information about this sale
	string URI;
}

// Metrics are only updated by the buyWithToken() and buyWithNative() functions
struct Metrics {
	// number of purchases
	uint256 purchaseCount;
	// number of buyers
	uint256 buyerCount;
	// amount bought denominated in a base currency
	uint256 purchaseTotal;
	// amount bought for each user denominated in a base currency
	mapping(address => uint256) buyerTotal;
}

struct PaymentTokenInfo {
	IOracleOrL2OracleWithSequencerCheck oracle;
	uint256 heartbeat;
	uint8 decimals;
}

contract FlatPriceSale_v_4_0 is Sale, PullPaymentUpgradeable, AccessVerifier {
	using Address for address payable;
	using SafeERC20Upgradeable for IERC20Upgradeable;

	event ImplementationConstructor(INetworkConfig networkConfig);
	event Update(Config config);
	event Initialize(
		Config config,
		string baseCurrency,
		IOracleOrL2OracleWithSequencerCheck nativeOracle,
		bool nativePaymentsEnabled
	);
	event SetPaymentTokenInfo(
		IERC20Upgradeable token,
		PaymentTokenInfo paymentTokenInfo
	);
	event SweepToken(address indexed token, uint256 amount);
	event SweepNative(uint256 amount);
	event RegisterDistributor(address distributor);

	// All supported chains must use 18 decimals (e.g. 1e18 wei / eth)
	uint256 internal constant NATIVE_TOKEN_DECIMALS = 18;

	// flag for additional merkle root data
	uint8 internal constant PER_USER_PURCHASE_LIMIT = 1;
	uint8 internal constant PER_USER_END_TIME = 2;

	/**
  Variables set by implementation contract constructor (immutable)
  */

	// denominator used to determine size of fee bips
	uint256 constant fractionDenominator = 10000;

	// an optional address where buyers can receive distributed tokens
	address distributor;

	/**
  Variables set during initialization of clone contracts ("immutable" on each instance)
  */

	// the base currency being used, e.g. 'USD'
	string public baseCurrency;

	string public constant VERSION = "4.0";

	// <native token>/<base currency> price, e.g. ETH/USD price
	IOracleOrL2OracleWithSequencerCheck public nativeTokenPriceOracle;

	// heartbeat value for oracle
	uint256 public nativeTokenPriceOracleHeartbeat;

	// whether native payments are enabled (set during intialization)
	bool nativePaymentsEnabled;

	// <ERC20 token>/<base currency> price oracles, eg USDC address => ETH/USDC price
	mapping(IERC20Upgradeable => PaymentTokenInfo) public paymentTokens;

	// owner can update these
	Config public config;

	// derived from payments
	Metrics public metrics;

	// reasonably random value: xor of merkle root and blockhash for transaction setting merkle root
	uint160 internal randomValue;

	INetworkConfig public immutable networkConfig;

	// All clones will share the information in the implementation constructor
	constructor(address _networkConfig) {
		networkConfig = INetworkConfig(_networkConfig);

		emit ImplementationConstructor(networkConfig);
	}

	/**
  Replacement for constructor for clones of the implementation contract
  Important: anyone can call the initialize function!
  */
	function initialize(
		address _owner,
		Config calldata _config,
		string calldata _baseCurrency,
		bool _nativePaymentsEnabled,
		IOracleOrL2OracleWithSequencerCheck _nativeTokenPriceOracle,
		uint256 _nativeTokenPriceOracleHeartbeat,
		IERC20Upgradeable[] calldata tokens,
		IOracleOrL2OracleWithSequencerCheck[] calldata oracles,
		uint256[] calldata oracleHeartbeats,
		uint8[] calldata decimals
	) public initializer validUpdate(_config) {
		// initialize the PullPayment escrow contract
		__PullPayment_init();

		__ReentrancyGuard_init();

		// validate the new sale
		require(tokens.length == oracles.length, "token and oracle lengths !=");
		require(
			tokens.length == decimals.length,
			"token and decimals lengths !="
		);
		require(
			address(_nativeTokenPriceOracle) != address(0),
			"native oracle == 0"
		);

		// save the new sale
		config = _config;

		// save payment config
		baseCurrency = _baseCurrency;
		nativeTokenPriceOracle = _nativeTokenPriceOracle;
		nativeTokenPriceOracleHeartbeat = _nativeTokenPriceOracleHeartbeat;
		nativePaymentsEnabled = _nativePaymentsEnabled;
		emit Initialize(
			config,
			baseCurrency,
			nativeTokenPriceOracle,
			_nativePaymentsEnabled
		);

		for (uint256 i = 0; i < tokens.length; i++) {
			// double check that tokens and oracles are real addresses
			require(address(tokens[i]) != address(0), "payment token == 0");
			require(address(oracles[i]) != address(0), "token oracle == 0");
			// save the payment token info
			paymentTokens[tokens[i]] = PaymentTokenInfo({
				oracle: oracles[i],
				heartbeat: oracleHeartbeats[i],
				decimals: decimals[i]
			});

			emit SetPaymentTokenInfo(tokens[i], paymentTokens[tokens[i]]);
		}

		// Set the random value for the fair queue time
		randomValue = generatePseudorandomValue();

		// transfer ownership to the user initializing the sale
		_transferOwnership(_owner);
	}

	/**
  Check that the user can currently participate in the sale based on the access signature
  */
	modifier canAccessSale(
		uint256 userLimit,
		uint64 expiresAt,
		bytes memory signature
	) {
		// make sure the buyer is an EOA
		require((_msgSender() == tx.origin), "Must buy with an EOA");

		verifyAccessSignature(
			networkConfig.getAccessAuthorityAddress(),
			_msgSender(),
			userLimit,
			expiresAt,
			signature
		);

		// Require the sale to be open
		require(block.timestamp > config.startTime, "sale has not started yet");
		require(block.timestamp < config.endTime, "sale has ended");
		require(
			metrics.purchaseTotal < config.saleMaximum,
			"sale buy limit reached"
		);

		// Reduce congestion by randomly assigning each user a delay time in a virtual queue based on comparing their address and a random value
		// if config.maxQueueTime == 0 the delay is 0
		require(
			block.timestamp - config.startTime > getFairQueueTime(_msgSender()),
			"not your turn yet"
		);
		_;
	}

	/**
  Check that the new sale is a valid update
  - If the config already exists, it must not be over (cannot edit sale after it concludes)
  - Sale start, end, and max queue times must be consistent and not too far in the future
   */
	modifier validUpdate(Config calldata newConfig) {
		// get the existing config
		Config memory oldConfig = config;

		/**
     - @notice - Block updates after sale is over 
     - @dev - Since validUpdate is called by initialize(), we can have a new
     - sale here, identifiable by default randomValue of 0
     */
		if (randomValue != 0) {
			// this is an existing sale: cannot update after it has ended
			require(
				block.timestamp < oldConfig.endTime,
				"sale is over: cannot upate"
			);
			if (block.timestamp > oldConfig.startTime) {
				// the sale has already started, some things should not be edited
				require(
					oldConfig.saleMaximum == newConfig.saleMaximum,
					"editing saleMaximum after sale start"
				);
			}
		}

		// the total sale limit must be at least as large as the per-user limit

		// all required values must be present and reasonable
		// check if the caller accidentally entered a value in milliseconds instead of seconds
		require(
			newConfig.startTime <= 4102444800,
			"start > 4102444800 (Jan 1 2100)"
		);
		require(
			newConfig.endTime <= 4102444800,
			"end > 4102444800 (Jan 1 2100)"
		);
		require(
			newConfig.maxQueueTime <= 604800,
			"max queue time > 604800 (1 week)"
		);
		require(newConfig.recipient != address(0), "recipient == address(0)");

		// sale, user, and purchase limits must be compatible
		require(newConfig.saleMaximum > 0, "saleMaximum == 0");
		require(newConfig.userMaximum > 0, "userMaximum == 0");
		require(
			newConfig.userMaximum <= newConfig.saleMaximum,
			"userMaximum > saleMaximum"
		);
		require(
			newConfig.purchaseMinimum <= newConfig.userMaximum,
			"purchaseMinimum > userMaximum"
		);

		// new sale times must be internally consistent
		require(
			newConfig.startTime + newConfig.maxQueueTime < newConfig.endTime,
			"sale must be open for at least maxQueueTime"
		);

		_;
	}

	modifier validPaymentToken(IERC20Upgradeable token) {
		// check that this token is configured as a payment method
		PaymentTokenInfo memory info = paymentTokens[token];
		require(address(info.oracle) != address(0), "invalid payment token");

		_;
	}

	modifier areNativePaymentsEnabled() {
		require(nativePaymentsEnabled, "native payments disabled");

		_;
	}

	// Get info on a payment token
	function getPaymentToken(
		IERC20Upgradeable token
	) external view returns (PaymentTokenInfo memory) {
		return paymentTokens[token];
	}

	// TODO: reduce duplication between other contracts
	// Get a positive token price from a chainlink oracle
	function getOraclePrice(
		IOracleOrL2OracleWithSequencerCheck oracle,
		uint256 heartbeat
	) public view returns (uint256) {
		(, int256 _price, , uint256 updatedAt, uint80 answeredInRound) = oracle
			.latestRoundData();

		require(_price > 0, "negative price");
		require(answeredInRound > 0, "answer == 0");
		require(updatedAt > 0, "round not complete");
		require(
			updatedAt > block.timestamp - heartbeat,
			"stale price due to heartbeat"
		);

		return uint256(_price);
	}

	/**
    Generate a pseudorandom value
    This is not a truly random value:
    - miners can alter the block hash
    - owners can repeatedly call setMerkleRoot()
    - owners can choose when to submit the transaction
  */
	function generatePseudorandomValue() public view returns (uint160) {
		return uint160(uint256(blockhash(block.number - 1)));
	}

	/**
    Get the delay in seconds that a specific buyer must wait after the sale begins in order to buy tokens in the sale

    Buyers cannot exploit the fair queue when:
    - The sale is private (merkle root != bytes32(0))
    - Each eligible buyer gets exactly one address in the merkle root

    Although miners and sellers can minimize the delay for an arbitrary address, these are not significant threats:
    - the economic opportunity to miners is zero or relatively small (only specific addresses can participate in private sales, and a better queue postion does not imply high returns)
    - sellers can repeatedly set merkle roots to achieve a favorable queue time for any address, but sellers already control the tokens being sold!
  */
	function getFairQueueTime(address buyer) public view returns (uint256) {
		if (config.maxQueueTime == 0) {
			// there is no delay: all addresses may participate immediately
			return 0;
		}

		// calculate a distance between the random value and the user's address using the XOR distance metric (c.f. Kademlia)
		uint160 distance = uint160(buyer) ^ randomValue;

		// calculate a speed at which the queue is exhausted such that all users complete the queue by sale.maxQueueTime
		uint160 distancePerSecond = type(uint160).max /
			uint160(config.maxQueueTime);
		// return the delay (seconds)
		return distance / distancePerSecond;
	}

	/**
  Convert a token quantity (e.g. USDC or ETH) to a base currency (e.g. USD) with the same number of decimals as the price oracle (e.g. 8)

  Example: given 2 NCT tokens, each worth $1.23, tokensToBaseCurrency should return 246000000 ($2.46)

  Function arguments
  - tokenQuantity: 2000000000000000000
  - tokenDecimals: 18

  NCT/USD chainlink oracle (important! the oracle must be <token>/<base currency> not <currency>/<base token>, e.g. ETH/USD, ~$2000 not USD/ETH, ~0.0005)
  - baseCurrencyPerToken: 123000000
  - baseCurrencyDecimals: 8

  Calculation: 2000000000000000000 * 123000000 / 1000000000000000000

  Returns: 246000000
  */
	// function tokensToBaseCurrency(SafeERC20Upgradeable token, uint256 quantity) public view validPaymentToken(token) returns (uint256) {
	//   PaymentTokenInfo info = paymentTokens[token];
	//   return quantity * getOraclePrice(info.oracle) / (10 ** info.decimals);
	// }
	// TODO: reduce duplication between other contracts
	function tokensToBaseCurrency(
		uint256 tokenQuantity,
		uint256 tokenDecimals,
		IOracleOrL2OracleWithSequencerCheck oracle,
		uint256 heartbeat
	) public view returns (uint256 value) {
		return
			(tokenQuantity * getOraclePrice(oracle, heartbeat)) /
			(10 ** tokenDecimals);
	}

	function total() external view override returns (uint256) {
		return metrics.purchaseTotal;
	}

	function isOver() public view override returns (bool) {
		return
			config.endTime <= block.timestamp ||
			metrics.purchaseTotal >= config.saleMaximum;
	}

	function isOpen() public view override returns (bool) {
		return
			config.startTime < block.timestamp &&
			config.endTime > block.timestamp &&
			metrics.purchaseTotal < config.saleMaximum;
	}

	// return the amount bought by this user in base currency
	function buyerTotal(address user) external view override returns (uint256) {
		return metrics.buyerTotal[user];
	}

	/**
  Records a purchase
  Follow the Checks -> Effects -> Interactions pattern
  * Checks: CALLER MUST ENSURE BUYER IS PERMITTED TO PARTICIPATE IN THIS SALE: THIS METHOD DOES NOT CHECK WHETHER THE BUYER SHOULD BE ABLE TO ACCESS THE SALE!
  * Effects: record the payment
  * Interactions: none!
  */
	function _execute(
		uint256 baseCurrencyQuantity,
		uint256 userLimit
	) internal {
		require(
			baseCurrencyQuantity + metrics.buyerTotal[_msgSender()] <=
				userLimit,
			"purchase exceeds your limit"
		);

		require(
			baseCurrencyQuantity + metrics.purchaseTotal <= config.saleMaximum,
			"purchase exceeds sale limit"
		);

		require(
			baseCurrencyQuantity >= config.purchaseMinimum,
			"purchase under minimum"
		);

		// Effects
		metrics.purchaseCount += 1;
		if (metrics.buyerTotal[_msgSender()] == 0) {
			// if no prior purchases, this is a new buyer
			metrics.buyerCount += 1;
		}
		metrics.purchaseTotal += baseCurrencyQuantity;
		metrics.buyerTotal[_msgSender()] += baseCurrencyQuantity;
	}

	/**
  Settle payment made with payment token
  Important: this function has no checks! Only call if the purchase is valid!
  */
	function _settlePaymentToken(
		uint256 baseCurrencyValue,
		IERC20Upgradeable token,
		uint256 quantity,
		uint256 feeLevel,
		uint256 platformFlatRateFeeAmount
	) internal {
		uint256 fee = (quantity * feeLevel) / fractionDenominator;
		token.safeTransferFrom(
			_msgSender(),
			networkConfig.getFeeRecipient(),
			fee
		);
		token.safeTransferFrom(_msgSender(), address(this), quantity - fee);
		emit Buy(
			_msgSender(),
			address(token),
			baseCurrencyValue,
			quantity,
			fee,
			platformFlatRateFeeAmount
		);
	}

	/**
  Settle payment made with native token
  Important: this function has no checks! Only call if the purchase is valid!
  */
	function _settleNativeToken(
		uint256 baseCurrencyValue,
		uint256 nativeTokenQuantity,
		uint256 feeLevel,
		uint256 platformFlatRateFeeAmount
	) internal {
		uint256 nativeFee = (nativeTokenQuantity * feeLevel) /
			fractionDenominator;
		_asyncTransfer(networkConfig.getFeeRecipient(), nativeFee);
		_asyncTransfer(
			config.recipient,
			nativeTokenQuantity - nativeFee - platformFlatRateFeeAmount
		);

		// This contract will hold the native token until claimed by the owner
		emit Buy(
			_msgSender(),
			address(0),
			baseCurrencyValue,
			nativeTokenQuantity,
			nativeFee,
			platformFlatRateFeeAmount
		);
	}

	/**
  Pay with the payment token (e.g. USDC)
  */
	function buyWithToken(
		IERC20Upgradeable token,
		uint256 quantity,
		uint256 userLimit,
		uint64 expiresAt,
		bytes memory signature,
		address payable platformFlatRateFeeRecipient,
		uint256 platformFlatRateFeeAmount
	)
		external
		payable
		override
		canAccessSale(userLimit, expiresAt, signature)
		validPaymentToken(token)
		nonReentrant
	{
		uint256 nativeBaseCurrencyValue = tokensToBaseCurrency(
			msg.value,
			NATIVE_TOKEN_DECIMALS,
			nativeTokenPriceOracle,
			nativeTokenPriceOracleHeartbeat
		);

		require(
			nativeBaseCurrencyValue >= platformFlatRateFeeAmount,
			"fee payment below minimum"
		);

		uint256 feeAmountInWei = ((platformFlatRateFeeAmount *
			(10 ** NATIVE_TOKEN_DECIMALS)) /
			getOraclePrice(
				nativeTokenPriceOracle,
				nativeTokenPriceOracleHeartbeat
			));

		platformFlatRateFeeRecipient.sendValue(feeAmountInWei);

		// convert to base currency from payment tokens
		PaymentTokenInfo memory tokenInfo = paymentTokens[token];
		uint256 baseCurrencyValue = tokensToBaseCurrency(
			quantity,
			tokenInfo.decimals,
			tokenInfo.oracle,
			tokenInfo.heartbeat
		);

		IFeeLevelJudge feeLevelJudge = IFeeLevelJudge(
			networkConfig.getStakingAddress()
		);
		uint256 feeLevel = feeLevelJudge.getFeeLevel(_msgSender());
		if (feeLevel == 0) {
			feeLevel = 100;
		}

		// Checks and Effects
		_execute(baseCurrencyValue + platformFlatRateFeeAmount, userLimit);
		// Interactions
		_settlePaymentToken(
			baseCurrencyValue + platformFlatRateFeeAmount,
			token,
			quantity,
			feeLevel,
			platformFlatRateFeeAmount
		);
	}

	/**
  Pay with the native token (e.g. ETH)
   */
	function buyWithNative(
		uint256 userLimit,
		uint64 expiresAt,
		bytes memory signature,
		address payable platformFlatRateFeeRecipient,
		uint256 platformFlatRateFeeAmount
	)
		external
		payable
		override
		canAccessSale(userLimit, expiresAt, signature)
		areNativePaymentsEnabled
		nonReentrant
	{
		// convert to base currency from native tokens
		// converts msg.value (which is how much ETH was sent by user) to USD
		// Example: On September 1st, 2024
		// 		0.005 * 2450**10e8 => ~$10 = how much in USD represents
		// 		msg.value
		uint256 baseCurrencyValue = tokensToBaseCurrency(
			msg.value,
			NATIVE_TOKEN_DECIMALS,
			nativeTokenPriceOracle,
			nativeTokenPriceOracleHeartbeat
		);

		require(
			baseCurrencyValue >= platformFlatRateFeeAmount,
			"fee payment below minimum"
		);

		// Example: On September 1st, 2024
		// 		1/2450 * 10**18 = how much ETH (in wei) we need to represent
		// 		1 USD
		uint256 feeAmountInWei = ((platformFlatRateFeeAmount *
			(10 ** NATIVE_TOKEN_DECIMALS)) /
			getOraclePrice(
				nativeTokenPriceOracle,
				nativeTokenPriceOracleHeartbeat
			));

		platformFlatRateFeeRecipient.sendValue(feeAmountInWei);

		IFeeLevelJudge feeLevelJudge = IFeeLevelJudge(
			networkConfig.getStakingAddress()
		);
		uint256 feeLevel = feeLevelJudge.getFeeLevel(_msgSender());
		if (feeLevel == 0) {
			feeLevel = 100;
		}
		// Checks and Effects
		_execute(baseCurrencyValue, userLimit);
		// Interactions
		_settleNativeToken(
			baseCurrencyValue,
			msg.value,
			feeLevel,
			feeAmountInWei
		);
	}

	/**
  External management functions (only the owner may update the sale)
  */
	function update(
		Config calldata _config
	) external validUpdate(_config) onlyOwner {
		config = _config;
		// updates always reset the random value
		randomValue = generatePseudorandomValue();
		emit Update(config);
	}

	// Tell users where they can claim tokens
	function registerDistributor(address _distributor) external onlyOwner {
		require(_distributor != address(0), "Distributor == address(0)");
		distributor = _distributor;
		emit RegisterDistributor(distributor);
	}

	/**
  Public management functions
  */
	// Sweep an ERC20 token to the recipient (public function)
	function sweepToken(IERC20Upgradeable token) external {
		uint256 amount = token.balanceOf(address(this));
		token.safeTransfer(config.recipient, amount);
		emit SweepToken(address(token), amount);
	}

	// sweep native token to the recipient (public function)
	function sweepNative() external {
		uint256 amount = address(this).balance;
		(bool success, ) = config.recipient.call{ value: amount }("");
		require(success, "Transfer failed.");
		emit SweepNative(amount);
	}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal onlyInitializing {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/PullPayment.sol)

pragma solidity ^0.8.0;

import "../utils/escrow/EscrowUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Simple implementation of a
 * https://consensys.github.io/smart-contract-best-practices/development-recommendations/general/external-calls/#favor-pull-over-push-for-external-calls[pull-payment]
 * strategy, where the paying contract doesn't interact directly with the
 * receiver account, which must withdraw its payments itself.
 *
 * Pull-payments are often considered the best practice when it comes to sending
 * Ether, security-wise. It prevents recipients from blocking execution, and
 * eliminates reentrancy concerns.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 *
 * To use, derive from the `PullPayment` contract, and use {_asyncTransfer}
 * instead of Solidity's `transfer` function. Payees can query their due
 * payments with {payments}, and retrieve them with {withdrawPayments}.
 *
 * @custom:storage-size 51
 */
abstract contract PullPaymentUpgradeable is Initializable {
    EscrowUpgradeable private _escrow;

    function __PullPayment_init() internal onlyInitializing {
        __PullPayment_init_unchained();
    }

    function __PullPayment_init_unchained() internal onlyInitializing {
        _escrow = new EscrowUpgradeable();
        _escrow.initialize();
    }

    /**
     * @dev Withdraw accumulated payments, forwarding all gas to the recipient.
     *
     * Note that _any_ account can call this function, not just the `payee`.
     * This means that contracts unaware of the `PullPayment` protocol can still
     * receive funds this way, by having a separate account call
     * {withdrawPayments}.
     *
     * WARNING: Forwarding all gas opens the door to reentrancy vulnerabilities.
     * Make sure you trust the recipient, or are either following the
     * checks-effects-interactions pattern or using {ReentrancyGuard}.
     *
     * @param payee Whose payments will be withdrawn.
     *
     * Causes the `escrow` to emit a {Withdrawn} event.
     */
    function withdrawPayments(address payable payee) public virtual {
        _escrow.withdraw(payee);
    }

    /**
     * @dev Returns the payments owed to an address.
     * @param dest The creditor's address.
     */
    function payments(address dest) public view returns (uint256) {
        return _escrow.depositsOf(dest);
    }

    /**
     * @dev Called by the payer to store the sent amount as credit to be pulled.
     * Funds sent in this way are stored in an intermediate {Escrow} contract, so
     * there is no danger of them being spent before withdrawal.
     *
     * @param dest The destination address of the funds.
     * @param amount The amount to transfer.
     *
     * Causes the `escrow` to emit a {Deposited} event.
     */
    function _asyncTransfer(address dest, uint256 amount) internal virtual {
        _escrow.deposit{value: amount}(dest);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20Upgradeable {
    using AddressUpgradeable for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20PermitUpgradeable token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProofUpgradeable {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/escrow/Escrow.sol)

pragma solidity ^0.8.0;

import "../../access/OwnableUpgradeable.sol";
import "../AddressUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @title Escrow
 * @dev Base escrow contract, holds funds designated for a payee until they
 * withdraw them.
 *
 * Intended usage: This contract (and derived escrow contracts) should be a
 * standalone contract, that only interacts with the contract that instantiated
 * it. That way, it is guaranteed that all Ether will be handled according to
 * the `Escrow` rules, and there is no need to check for payable functions or
 * transfers in the inheritance tree. The contract that uses the escrow as its
 * payment method should be its owner, and provide public methods redirecting
 * to the escrow's deposit and withdraw.
 */
contract EscrowUpgradeable is Initializable, OwnableUpgradeable {
    using AddressUpgradeable for address payable;

    event Deposited(address indexed payee, uint256 weiAmount);
    event Withdrawn(address indexed payee, uint256 weiAmount);

    mapping(address => uint256) private _deposits;

    function __Escrow_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Escrow_init_unchained() internal onlyInitializing {
    }
    function initialize() public virtual initializer {
        __Escrow_init();
    }
    function depositsOf(address payee) public view returns (uint256) {
        return _deposits[payee];
    }

    /**
     * @dev Stores the sent amount as credit to be withdrawn.
     * @param payee The destination address of the funds.
     *
     * Emits a {Deposited} event.
     */
    function deposit(address payee) public payable virtual onlyOwner {
        uint256 amount = msg.value;
        _deposits[payee] += amount;
        emit Deposited(payee, amount);
    }

    /**
     * @dev Withdraw accumulated balance for a payee, forwarding all gas to the
     * recipient.
     *
     * WARNING: Forwarding all gas opens the door to reentrancy vulnerabilities.
     * Make sure you trust the recipient, or are either following the
     * checks-effects-interactions pattern or using {ReentrancyGuard}.
     *
     * @param payee The address whose funds will be withdrawn and transferred to.
     *
     * Emits a {Withdrawn} event.
     */
    function withdraw(address payable payee) public virtual onlyOwner {
        uint256 payment = _deposits[payee];

        _deposits[payee] = 0;

        payee.sendValue(payment);

        emit Withdrawn(payee, payment);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;

interface IFeeLevelJudge {
	function getFeeLevel(address user) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;

interface INetworkConfig {
	function getFeeRecipient() external view returns (address payable);
	function getStakingAddress() external view returns (address);
	function getNativeTokenPriceOracleAddress() external view returns (address);
	function getNativeTokenPriceOracleHeartbeat() external view returns (uint256);
	function getAccessAuthorityAddress() external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

interface IOracleOrL2OracleWithSequencerCheck {
    function decimals() external view returns (uint8); 
    
    function latestRoundData() external view returns (
      uint80 roundId,
      int256 answer,
      uint256 startedAt,
      uint256 updatedAt,
      uint80 answeredInRound
    );
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/cryptography/MerkleProofUpgradeable.sol";

// Upgradeable contracts are required to use clone() in SaleFactory
abstract contract Sale is ReentrancyGuardUpgradeable, OwnableUpgradeable {
	using SafeERC20Upgradeable for IERC20Upgradeable;
	event Buy(
		address indexed buyer,
		address indexed token,
		uint256 baseCurrencyValue,
		uint256 tokenValue,
		uint256 protocolTokenFee,
		uint256 platformTokenFee
	);

	/**
  Important: the constructor is only called once on the implementation contract (which is never initialized)
  Clones using this implementation cannot use this constructor method.
  Thus every clone must use the same fields stored in the constructor (feeBips, feeRecipient)
  */

	/// @custom:oz-upgrades-unsafe-allow constructor
	constructor() {
		_disableInitializers();
	}

	function buyWithToken(
		IERC20Upgradeable token,
		uint256 quantity,
		uint256 userLimit,
		uint64 expiresAt,
		bytes memory signature,
		address payable platformFlatRateFeeRecipient,
		uint256 platformFlatRateFeeAmount
	) external payable virtual {}

	function buyWithNative(
		uint256 userLimit,
		uint64 expiresAt,
		bytes memory signature,
		address payable platformFlatRateFeeRecipient,
		uint256 platformFlatRateFeeAmount
	) external payable virtual {}

	function isOpen() public view virtual returns (bool) {}

	function isOver() public view virtual returns (bool) {}

	function buyerTotal(address user) external view virtual returns (uint256) {}

	function total() external view virtual returns (uint256) {}
}

// SPDX-License-Identifier: MIT
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity ^0.8.20;

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

contract AccessVerifier {
	function verifyAccessSignature(
		address accessAuthorityAddress,
		address member,
		uint256 userLimit,
		uint64 expires_at,
		bytes memory signature
	) internal view {
		bytes memory message = abi.encodePacked(
			address(this),
			member,
			userLimit,
			expires_at
		);
		bytes32 hash = keccak256(message);
		bytes32 ethSignedMessageHash = ECDSA.toEthSignedMessageHash(hash);
		address signer = ECDSA.recover(ethSignedMessageHash, signature);

		// TODO: use custom error objects with a revert statement
		require(signer == accessAuthorityAddress, "access signature invalid");
		require(block.timestamp < expires_at, "access signature expired");
	}
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "viaIR": true,
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_networkConfig","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"baseCurrencyValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"protocolTokenFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"platformTokenFee","type":"uint256"}],"name":"Buy","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract INetworkConfig","name":"networkConfig","type":"address"}],"name":"ImplementationConstructor","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"saleMaximum","type":"uint256"},{"internalType":"uint256","name":"userMaximum","type":"uint256"},{"internalType":"uint256","name":"purchaseMinimum","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"maxQueueTime","type":"uint256"},{"internalType":"string","name":"URI","type":"string"}],"indexed":false,"internalType":"struct Config","name":"config","type":"tuple"},{"indexed":false,"internalType":"string","name":"baseCurrency","type":"string"},{"indexed":false,"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"nativeOracle","type":"address"},{"indexed":false,"internalType":"bool","name":"nativePaymentsEnabled","type":"bool"}],"name":"Initialize","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"distributor","type":"address"}],"name":"RegisterDistributor","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"components":[{"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"oracle","type":"address"},{"internalType":"uint256","name":"heartbeat","type":"uint256"},{"internalType":"uint8","name":"decimals","type":"uint8"}],"indexed":false,"internalType":"struct PaymentTokenInfo","name":"paymentTokenInfo","type":"tuple"}],"name":"SetPaymentTokenInfo","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SweepNative","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SweepToken","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"saleMaximum","type":"uint256"},{"internalType":"uint256","name":"userMaximum","type":"uint256"},{"internalType":"uint256","name":"purchaseMinimum","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"maxQueueTime","type":"uint256"},{"internalType":"string","name":"URI","type":"string"}],"indexed":false,"internalType":"struct Config","name":"config","type":"tuple"}],"name":"Update","type":"event"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseCurrency","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"userLimit","type":"uint256"},{"internalType":"uint64","name":"expiresAt","type":"uint64"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"address payable","name":"platformFlatRateFeeRecipient","type":"address"},{"internalType":"uint256","name":"platformFlatRateFeeAmount","type":"uint256"}],"name":"buyWithNative","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"internalType":"uint256","name":"quantity","type":"uint256"},{"internalType":"uint256","name":"userLimit","type":"uint256"},{"internalType":"uint64","name":"expiresAt","type":"uint64"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"address payable","name":"platformFlatRateFeeRecipient","type":"address"},{"internalType":"uint256","name":"platformFlatRateFeeAmount","type":"uint256"}],"name":"buyWithToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"buyerTotal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"saleMaximum","type":"uint256"},{"internalType":"uint256","name":"userMaximum","type":"uint256"},{"internalType":"uint256","name":"purchaseMinimum","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"maxQueueTime","type":"uint256"},{"internalType":"string","name":"URI","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"generatePseudorandomValue","outputs":[{"internalType":"uint160","name":"","type":"uint160"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"buyer","type":"address"}],"name":"getFairQueueTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"oracle","type":"address"},{"internalType":"uint256","name":"heartbeat","type":"uint256"}],"name":"getOraclePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"}],"name":"getPaymentToken","outputs":[{"components":[{"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"oracle","type":"address"},{"internalType":"uint256","name":"heartbeat","type":"uint256"},{"internalType":"uint8","name":"decimals","type":"uint8"}],"internalType":"struct PaymentTokenInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"saleMaximum","type":"uint256"},{"internalType":"uint256","name":"userMaximum","type":"uint256"},{"internalType":"uint256","name":"purchaseMinimum","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"maxQueueTime","type":"uint256"},{"internalType":"string","name":"URI","type":"string"}],"internalType":"struct Config","name":"_config","type":"tuple"},{"internalType":"string","name":"_baseCurrency","type":"string"},{"internalType":"bool","name":"_nativePaymentsEnabled","type":"bool"},{"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"_nativeTokenPriceOracle","type":"address"},{"internalType":"uint256","name":"_nativeTokenPriceOracleHeartbeat","type":"uint256"},{"internalType":"contract IERC20Upgradeable[]","name":"tokens","type":"address[]"},{"internalType":"contract IOracleOrL2OracleWithSequencerCheck[]","name":"oracles","type":"address[]"},{"internalType":"uint256[]","name":"oracleHeartbeats","type":"uint256[]"},{"internalType":"uint8[]","name":"decimals","type":"uint8[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isOver","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metrics","outputs":[{"internalType":"uint256","name":"purchaseCount","type":"uint256"},{"internalType":"uint256","name":"buyerCount","type":"uint256"},{"internalType":"uint256","name":"purchaseTotal","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nativeTokenPriceOracle","outputs":[{"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nativeTokenPriceOracleHeartbeat","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"networkConfig","outputs":[{"internalType":"contract INetworkConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"","type":"address"}],"name":"paymentTokens","outputs":[{"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"oracle","type":"address"},{"internalType":"uint256","name":"heartbeat","type":"uint256"},{"internalType":"uint8","name":"decimals","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"dest","type":"address"}],"name":"payments","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_distributor","type":"address"}],"name":"registerDistributor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sweepNative","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"}],"name":"sweepToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenQuantity","type":"uint256"},{"internalType":"uint256","name":"tokenDecimals","type":"uint256"},{"internalType":"contract IOracleOrL2OracleWithSequencerCheck","name":"oracle","type":"address"},{"internalType":"uint256","name":"heartbeat","type":"uint256"}],"name":"tokensToBaseCurrency","outputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"total","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"saleMaximum","type":"uint256"},{"internalType":"uint256","name":"userMaximum","type":"uint256"},{"internalType":"uint256","name":"purchaseMinimum","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"maxQueueTime","type":"uint256"},{"internalType":"string","name":"URI","type":"string"}],"internalType":"struct Config","name":"_config","type":"tuple"}],"name":"update","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"payee","type":"address"}],"name":"withdrawPayments","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.