Source Code
Latest 25 from a total of 78 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Compost And Rede... | 23491164 | 124 days ago | IN | 0 ETH | 0.00017768 | ||||
| Compost And Rede... | 23231020 | 161 days ago | IN | 0 ETH | 0.00002797 | ||||
| Compost And Rede... | 23177644 | 168 days ago | IN | 0 ETH | 0.00017063 | ||||
| Compost And Rede... | 22971894 | 197 days ago | IN | 0 ETH | 0.00025759 | ||||
| Compost And Rede... | 22919981 | 204 days ago | IN | 0 ETH | 0.00048443 | ||||
| Compost And Rede... | 22891706 | 208 days ago | IN | 0 ETH | 0.00135822 | ||||
| Compost And Rede... | 22579604 | 252 days ago | IN | 0 ETH | 0.00011836 | ||||
| Compost And Rede... | 22570515 | 253 days ago | IN | 0 ETH | 0.00008099 | ||||
| Compost And Rede... | 22562178 | 254 days ago | IN | 0 ETH | 0.00004885 | ||||
| Compost And Rede... | 22520021 | 260 days ago | IN | 0 ETH | 0.0001167 | ||||
| Compost And Rede... | 22510881 | 261 days ago | IN | 0 ETH | 0.00032809 | ||||
| Compost And Rede... | 22505172 | 262 days ago | IN | 0 ETH | 0.00009234 | ||||
| Compost And Rede... | 22504693 | 262 days ago | IN | 0 ETH | 0.00004747 | ||||
| Compost And Rede... | 22483733 | 265 days ago | IN | 0 ETH | 0.00025614 | ||||
| Compost And Rede... | 22483683 | 265 days ago | IN | 0 ETH | 0.00200804 | ||||
| Compost And Rede... | 22446153 | 270 days ago | IN | 0 ETH | 0.00031378 | ||||
| Compost And Rede... | 22419955 | 274 days ago | IN | 0 ETH | 0.00010023 | ||||
| Compost And Rede... | 22419726 | 274 days ago | IN | 0 ETH | 0.00003603 | ||||
| Compost And Rede... | 22404138 | 276 days ago | IN | 0 ETH | 0.00008117 | ||||
| Compost And Rede... | 22398822 | 277 days ago | IN | 0 ETH | 0.0001182 | ||||
| Compost And Rede... | 22397204 | 277 days ago | IN | 0 ETH | 0.00013797 | ||||
| Compost And Rede... | 22377861 | 280 days ago | IN | 0 ETH | 0.00007891 | ||||
| Compost And Rede... | 22375757 | 280 days ago | IN | 0 ETH | 0.00012222 | ||||
| Compost And Rede... | 22375378 | 280 days ago | IN | 0 ETH | 0.00011959 | ||||
| Compost And Rede... | 22369108 | 281 days ago | IN | 0 ETH | 0.00009201 |
Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| Transfer | 24351134 | 4 days ago | 0.00297096 ETH | ||||
| Transfer | 24335565 | 6 days ago | 0.00390033 ETH | ||||
| Transfer | 24335565 | 6 days ago | 0.06983464 ETH | ||||
| Transfer | 24259201 | 17 days ago | 0.00154539 ETH | ||||
| Transfer | 24186236 | 27 days ago | 0.01969537 ETH | ||||
| Transfer | 24156786 | 31 days ago | 0.00284644 ETH | ||||
| Transfer | 24156786 | 31 days ago | 0.00284644 ETH | ||||
| Transfer | 24156786 | 31 days ago | 0.13683737 ETH | ||||
| Transfer | 24135739 | 34 days ago | 0.00148137 ETH | ||||
| Transfer | 24135690 | 34 days ago | 0.0196924 ETH | ||||
| Transfer | 24135689 | 34 days ago | 0.00146048 ETH | ||||
| Transfer | 24135689 | 34 days ago | 0.00455014 ETH | ||||
| Transfer | 24135689 | 34 days ago | 0.13718408 ETH | ||||
| Transfer | 24124050 | 36 days ago | 0.00454212 ETH | ||||
| Transfer | 24124050 | 36 days ago | 0.00457248 ETH | ||||
| Transfer | 24124049 | 36 days ago | 0.00146048 ETH | ||||
| Transfer | 24124047 | 36 days ago | 0.00284644 ETH | ||||
| Transfer | 24124047 | 36 days ago | 0.00284644 ETH | ||||
| Transfer | 24124047 | 36 days ago | 0.22505812 ETH | ||||
| Transfer | 24100430 | 39 days ago | 0.00454192 ETH | ||||
| Transfer | 24100429 | 39 days ago | 0.00421425 ETH | ||||
| Transfer | 24100429 | 39 days ago | 0.00423255 ETH | ||||
| Transfer | 24100429 | 39 days ago | 0.00284644 ETH | ||||
| Transfer | 24100429 | 39 days ago | 0.1363324 ETH | ||||
| Transfer | 24046163 | 47 days ago | 0.00162541 ETH |
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
MetaFactoryV1Composter
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
No with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
// ---------------- ETH REDEMPTION CONTRACT (MAINNET) ----------------
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
/**
* @title MetaFactoryV1Composter
* @dev Contract for MetaFactory DAO v1 to v2 transition
* Allows ROBOT token holders to compost (i.e. send to dead address) their tokens for ETH
*/
contract MetaFactoryV1Composter is Ownable, ReentrancyGuard, Pausable {
using Strings for uint256;
address public constant DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD;
IERC20 public robotToken;
uint256 public totalEthAllocated;
uint256 public circulatingSupply;
mapping(address => uint256) public compostedTokens;
uint256 public redemptionEndTime;
bool public redemptionActivated;
event Redeem(address indexed user, uint256 tokensComposted, uint256 totalComposted, uint256 ethRedeemed, address passportRecipient);
event EthWithdrawn(address indexed recipient, uint256 amount);
event RedemptionActivated(uint256 endTime);
event FundsAdded(uint256 amount, uint256 totalAllocated);
event CirculatingSupplyUpdated(uint256 newSupply);
constructor(address _robotToken) Ownable(msg.sender) {
require(_robotToken != address(0), "Token address cannot be zero");
robotToken = IERC20(_robotToken);
// Start in paused state
_pause();
}
/**
* @dev Allows the owner to update the circulating supply before redemption begins
* @param _circulatingSupply New total ROBOT supply eligible for redemption
*/
function setCirculatingSupply(uint256 _circulatingSupply) external onlyOwner {
require(!redemptionActivated, "Redemption already activated");
require(_circulatingSupply > 0, "Supply must be greater than 0");
require(_circulatingSupply <= robotToken.totalSupply(), "Invalid supply");
circulatingSupply = _circulatingSupply;
emit CirculatingSupplyUpdated(_circulatingSupply);
}
/**
* @dev Allows the owner to fund the contract with ETH for redemptions
*/
function fundRedemptions() external payable onlyOwner {
require(!redemptionActivated, "Redemption already activated");
totalEthAllocated += msg.value;
emit FundsAdded(msg.value, totalEthAllocated);
}
function activateRedemption() external onlyOwner whenPaused {
require(totalEthAllocated > 0, "No ETH allocated for redemptions");
require(circulatingSupply > 0, "Circulating supply not set");
redemptionActivated = true;
redemptionEndTime = block.timestamp + 365 days;
emit RedemptionActivated(redemptionEndTime);
_unpause();
}
/**
* @dev Composts user's ROBOT tokens and issues ETH in return
* @param amount Amount of ROBOT tokens to compost
* @param passportRecipient Optional address to receive NFT on Base network (defaults to msg.sender)
*/
function compostAndRedeem(uint256 amount, address passportRecipient) external nonReentrant whenNotPaused {
require(redemptionActivated, "Redemption not activated yet");
require(amount > 0, "Amount must be greater than 0");
require(robotToken.balanceOf(msg.sender) >= amount, "Insufficient ROBOT balance");
address finalRecipient = passportRecipient == address(0) ? msg.sender : passportRecipient;
uint256 ethAmount = (amount * totalEthAllocated) / circulatingSupply;
require(address(this).balance >= ethAmount, "Insufficient ETH in contract");
compostedTokens[msg.sender] += amount;
require(robotToken.transferFrom(msg.sender, DEAD_ADDRESS, amount), "Token transfer failed");
(bool success, ) = payable(msg.sender).call{value: ethAmount}("");
require(success, "ETH transfer failed");
emit Redeem(msg.sender, amount, compostedTokens[msg.sender], ethAmount, finalRecipient);
}
/**
* @dev Returns the total composted tokens for a user
* @param user Address to check
* @return Total amount of ROBOT tokens composted by the user
*/
function getTotalCompostedByUser(address user) external view returns (uint256) {
return compostedTokens[user];
}
/**
* @dev Allows owner to withdraw ETH before redemption begins or after it ends
* @param recipient Address to receive the ETH
*/
function withdrawEth(address recipient) external onlyOwner {
require(recipient != address(0), "Invalid recipient");
require(!redemptionActivated || block.timestamp > redemptionEndTime, "Cannot withdraw during active redemption");
uint256 balance = address(this).balance;
require(balance > 0, "No ETH to withdraw");
(bool success, ) = payable(recipient).call{value: balance}("");
require(success, "ETH transfer failed");
if (!redemptionActivated) {
totalEthAllocated = 0;
}
emit EthWithdrawn(recipient, balance);
}
/**
* @dev Calculates the amount of ETH a user would receive for composting tokens
* @param amount Amount of ROBOT tokens to compost
* @return ethAmount Amount of ETH the user would receive
*/
function calculateRedemptionAmount(uint256 amount) external view returns (uint256) {
return (amount * totalEthAllocated) / circulatingSupply;
}
function isRedemptionPeriodOver() external view returns (bool) {
return redemptionActivated && block.timestamp > redemptionEndTime;
}
/**
* @dev Emergency pause function
*/
function pauseRedemption() external onlyOwner whenNotPaused {
_pause();
}
/**
* @dev Resume redemption after emergency pause
*/
function unpauseRedemption() external onlyOwner whenPaused {
require(redemptionActivated, "Redemption not activated yet");
require(block.timestamp < redemptionEndTime, "Redemption period has ended");
_unpause();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}{
"remappings": [
"@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/"
],
"optimizer": {
"enabled": false,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_robotToken","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newSupply","type":"uint256"}],"name":"CirculatingSupplyUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EthWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalAllocated","type":"uint256"}],"name":"FundsAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokensComposted","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalComposted","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethRedeemed","type":"uint256"},{"indexed":false,"internalType":"address","name":"passportRecipient","type":"address"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"RedemptionActivated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DEAD_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"activateRedemption","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"calculateRedemptionAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"circulatingSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"passportRecipient","type":"address"}],"name":"compostAndRedeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"compostedTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fundRedemptions","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getTotalCompostedByUser","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isRedemptionPeriodOver","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pauseRedemption","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"redemptionActivated","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"redemptionEndTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"robotToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_circulatingSupply","type":"uint256"}],"name":"setCirculatingSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalEthAllocated","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpauseRedemption","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawEth","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
608060405234801561000f575f80fd5b5060405161235c38038061235c83398181016040528101906100319190610385565b335f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036100a2575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161009991906103bf565b60405180910390fd5b6100b18161019560201b60201c565b50600180819055505f60025f6101000a81548160ff0219169083151502179055505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610140576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161013790610432565b60405180910390fd5b80600260016101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555061018f61025660201b60201c565b50610450565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b6102646102c460201b60201c565b600160025f6101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586102ad61030b60201b60201c565b6040516102ba91906103bf565b60405180910390a1565b6102d261031260201b60201c565b15610309576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f33905090565b5f60025f9054906101000a900460ff16905090565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6103548261032b565b9050919050565b6103648161034a565b811461036e575f80fd5b50565b5f8151905061037f8161035b565b92915050565b5f6020828403121561039a57610399610327565b5b5f6103a784828501610371565b91505092915050565b6103b98161034a565b82525050565b5f6020820190506103d25f8301846103b0565b92915050565b5f82825260208201905092915050565b7f546f6b656e20616464726573732063616e6e6f74206265207a65726f000000005f82015250565b5f61041c601c836103d8565b9150610427826103e8565b602082019050919050565b5f6020820190508181035f83015261044981610410565b9050919050565b611eff8061045d5f395ff3fe608060405260043610610129575f3560e01c806376074b35116100aa57806394f820c41161006e57806394f820c414610367578063b17640711461038f578063b8520cec146103b7578063d2d562a4146103e1578063e9f26abc1461040b578063f2fde38b1461043557610129565b806376074b35146102ab5780638d044c06146102e75780638da5cb5b146102fd57806392bccb80146103275780639358928b1461033d57610129565b80635c975abb116100f15780635c975abb146101c95780635ff17d7c146101f3578063619a30981461022f5780636bf9ed591461026b578063715018a61461029557610129565b80630434bfbc1461012d57806325e1606314610143578063281155ba1461016b57806339c5f434146101755780634e6fd6c41461019f575b5f80fd5b348015610138575f80fd5b5061014161045d565b005b34801561014e575f80fd5b506101696004803603810190610164919061144b565b610568565b005b610173610795565b005b348015610180575f80fd5b50610189610841565b60405161019691906114d1565b60405180910390f35b3480156101aa575f80fd5b506101b3610867565b6040516101c091906114f9565b60405180910390f35b3480156101d4575f80fd5b506101dd61086d565b6040516101ea919061152c565b60405180910390f35b3480156101fe575f80fd5b506102196004803603810190610214919061144b565b610882565b604051610226919061155d565b60405180910390f35b34801561023a575f80fd5b506102556004803603810190610250919061144b565b6108c8565b604051610262919061155d565b60405180910390f35b348015610276575f80fd5b5061027f6108dd565b60405161028c919061155d565b60405180910390f35b3480156102a0575f80fd5b506102a96108e3565b005b3480156102b6575f80fd5b506102d160048036038101906102cc91906115a0565b6108f6565b6040516102de919061155d565b60405180910390f35b3480156102f2575f80fd5b506102fb610919565b005b348015610308575f80fd5b506103116109c5565b60405161031e91906114f9565b60405180910390f35b348015610332575f80fd5b5061033b6109ec565b005b348015610348575f80fd5b50610351610a06565b60405161035e919061155d565b60405180910390f35b348015610372575f80fd5b5061038d600480360381019061038891906115cb565b610a0c565b005b34801561039a575f80fd5b506103b560048036038101906103b091906115a0565b610ea2565b005b3480156103c2575f80fd5b506103cb61104d565b6040516103d8919061152c565b60405180910390f35b3480156103ec575f80fd5b506103f561105f565b604051610402919061155d565b60405180910390f35b348015610416575f80fd5b5061041f611065565b60405161042c919061152c565b60405180910390f35b348015610440575f80fd5b5061045b6004803603810190610456919061144b565b611087565b005b61046561110b565b61046d611192565b5f600354116104b1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104a890611663565b60405180910390fd5b5f600454116104f5576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104ec906116cb565b60405180910390fd5b600160075f6101000a81548160ff0219169083151502179055506301e133804261051f9190611716565b6006819055507f4c67bda6d80af2a8e879e8df18fbda2cf6df45ff7958d9e6bb55f522ea476629600654604051610556919061155d565b60405180910390a16105666111d2565b565b61057061110b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036105de576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016105d590611793565b60405180910390fd5b60075f9054906101000a900460ff1615806105fa575060065442115b610639576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161063090611821565b60405180910390fd5b5f4790505f811161067f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161067690611889565b60405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff16826040516106a4906118d4565b5f6040518083038185875af1925050503d805f81146106de576040519150601f19603f3d011682016040523d82523d5f602084013e6106e3565b606091505b5050905080610727576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161071e90611932565b60405180910390fd5b60075f9054906101000a900460ff16610742575f6003819055505b8273ffffffffffffffffffffffffffffffffffffffff167f8455ae6be5d92f1df1c3c1484388e247a36c7e60d72055ae216dbc258f257d4b83604051610788919061155d565b60405180910390a2505050565b61079d61110b565b60075f9054906101000a900460ff16156107ec576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016107e39061199a565b60405180910390fd5b3460035f8282546107fd9190611716565b925050819055507ff5e4934928a1e45d88c7a5aa2661fe0a801ca5017922e15122d74f1880155e1a346003546040516108379291906119b8565b60405180910390a1565b600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61dead81565b5f60025f9054906101000a900460ff16905090565b5f60055f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6005602052805f5260405f205f915090505481565b60065481565b6108eb61110b565b6108f45f611233565b565b5f6004546003548361090891906119df565b6109129190611a4d565b9050919050565b61092161110b565b610929611192565b60075f9054906101000a900460ff16610977576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161096e90611ac7565b60405180910390fd5b60065442106109bb576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016109b290611b2f565b60405180910390fd5b6109c36111d2565b565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6109f461110b565b6109fc6112f4565b610a04611335565b565b60045481565b610a14611397565b610a1c6112f4565b60075f9054906101000a900460ff16610a6a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a6190611ac7565b60405180910390fd5b5f8211610aac576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610aa390611b97565b60405180910390fd5b81600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231336040518263ffffffff1660e01b8152600401610b0891906114f9565b602060405180830381865afa158015610b23573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b479190611bc9565b1015610b88576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b7f90611c3e565b60405180910390fd5b5f8073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614610bc25781610bc4565b335b90505f60045460035485610bd891906119df565b610be29190611a4d565b905080471015610c27576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c1e90611ca6565b60405180910390fd5b8360055f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f828254610c739190611716565b92505081905550600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166323b872dd3361dead876040518463ffffffff1660e01b8152600401610cdb93929190611cc4565b6020604051808303815f875af1158015610cf7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d1b9190611d23565b610d5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5190611d98565b60405180910390fd5b5f3373ffffffffffffffffffffffffffffffffffffffff1682604051610d7f906118d4565b5f6040518083038185875af1925050503d805f8114610db9576040519150601f19603f3d011682016040523d82523d5f602084013e610dbe565b606091505b5050905080610e02576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610df990611932565b60405180910390fd5b3373ffffffffffffffffffffffffffffffffffffffff167f4cbaede2de574837e61a98a30aa5d7353c76facef958abbb7768c4c46ff612d98660055f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20548587604051610e8b9493929190611db6565b60405180910390a2505050610e9e6113dd565b5050565b610eaa61110b565b60075f9054906101000a900460ff1615610ef9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610ef09061199a565b60405180910390fd5b5f8111610f3b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f3290611e43565b60405180910390fd5b600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610fa6573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fca9190611bc9565b81111561100c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161100390611eab565b60405180910390fd5b806004819055507f6c94155fc9c34df6d34964ca1f93e622bb7ddc5232996336d7a838266c159f7381604051611042919061155d565b60405180910390a150565b60075f9054906101000a900460ff1681565b60035481565b5f60075f9054906101000a900460ff168015611082575060065442115b905090565b61108f61110b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036110ff575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016110f691906114f9565b60405180910390fd5b61110881611233565b50565b6111136113e6565b73ffffffffffffffffffffffffffffffffffffffff166111316109c5565b73ffffffffffffffffffffffffffffffffffffffff1614611190576111546113e6565b6040517f118cdaa700000000000000000000000000000000000000000000000000000000815260040161118791906114f9565b60405180910390fd5b565b61119a61086d565b6111d0576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b6111da611192565b5f60025f6101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa61121c6113e6565b60405161122991906114f9565b60405180910390a1565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b6112fc61086d565b15611333576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b61133d6112f4565b600160025f6101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586113806113e6565b60405161138d91906114f9565b60405180910390a1565b6002600154036113d3576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600181905550565b60018081905550565b5f33905090565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61141a826113f1565b9050919050565b61142a81611410565b8114611434575f80fd5b50565b5f8135905061144581611421565b92915050565b5f602082840312156114605761145f6113ed565b5b5f61146d84828501611437565b91505092915050565b5f819050919050565b5f61149961149461148f846113f1565b611476565b6113f1565b9050919050565b5f6114aa8261147f565b9050919050565b5f6114bb826114a0565b9050919050565b6114cb816114b1565b82525050565b5f6020820190506114e45f8301846114c2565b92915050565b6114f381611410565b82525050565b5f60208201905061150c5f8301846114ea565b92915050565b5f8115159050919050565b61152681611512565b82525050565b5f60208201905061153f5f83018461151d565b92915050565b5f819050919050565b61155781611545565b82525050565b5f6020820190506115705f83018461154e565b92915050565b61157f81611545565b8114611589575f80fd5b50565b5f8135905061159a81611576565b92915050565b5f602082840312156115b5576115b46113ed565b5b5f6115c28482850161158c565b91505092915050565b5f80604083850312156115e1576115e06113ed565b5b5f6115ee8582860161158c565b92505060206115ff85828601611437565b9150509250929050565b5f82825260208201905092915050565b7f4e6f2045544820616c6c6f636174656420666f7220726564656d7074696f6e735f82015250565b5f61164d602083611609565b915061165882611619565b602082019050919050565b5f6020820190508181035f83015261167a81611641565b9050919050565b7f43697263756c6174696e6720737570706c79206e6f74207365740000000000005f82015250565b5f6116b5601a83611609565b91506116c082611681565b602082019050919050565b5f6020820190508181035f8301526116e2816116a9565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61172082611545565b915061172b83611545565b9250828201905080821115611743576117426116e9565b5b92915050565b7f496e76616c696420726563697069656e740000000000000000000000000000005f82015250565b5f61177d601183611609565b915061178882611749565b602082019050919050565b5f6020820190508181035f8301526117aa81611771565b9050919050565b7f43616e6e6f7420776974686472617720647572696e67206163746976652072655f8201527f64656d7074696f6e000000000000000000000000000000000000000000000000602082015250565b5f61180b602883611609565b9150611816826117b1565b604082019050919050565b5f6020820190508181035f830152611838816117ff565b9050919050565b7f4e6f2045544820746f20776974686472617700000000000000000000000000005f82015250565b5f611873601283611609565b915061187e8261183f565b602082019050919050565b5f6020820190508181035f8301526118a081611867565b9050919050565b5f81905092915050565b50565b5f6118bf5f836118a7565b91506118ca826118b1565b5f82019050919050565b5f6118de826118b4565b9150819050919050565b7f455448207472616e73666572206661696c6564000000000000000000000000005f82015250565b5f61191c601383611609565b9150611927826118e8565b602082019050919050565b5f6020820190508181035f83015261194981611910565b9050919050565b7f526564656d7074696f6e20616c726561647920616374697661746564000000005f82015250565b5f611984601c83611609565b915061198f82611950565b602082019050919050565b5f6020820190508181035f8301526119b181611978565b9050919050565b5f6040820190506119cb5f83018561154e565b6119d8602083018461154e565b9392505050565b5f6119e982611545565b91506119f483611545565b9250828202611a0281611545565b91508282048414831517611a1957611a186116e9565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f611a5782611545565b9150611a6283611545565b925082611a7257611a71611a20565b5b828204905092915050565b7f526564656d7074696f6e206e6f742061637469766174656420796574000000005f82015250565b5f611ab1601c83611609565b9150611abc82611a7d565b602082019050919050565b5f6020820190508181035f830152611ade81611aa5565b9050919050565b7f526564656d7074696f6e20706572696f642068617320656e64656400000000005f82015250565b5f611b19601b83611609565b9150611b2482611ae5565b602082019050919050565b5f6020820190508181035f830152611b4681611b0d565b9050919050565b7f416d6f756e74206d7573742062652067726561746572207468616e20300000005f82015250565b5f611b81601d83611609565b9150611b8c82611b4d565b602082019050919050565b5f6020820190508181035f830152611bae81611b75565b9050919050565b5f81519050611bc381611576565b92915050565b5f60208284031215611bde57611bdd6113ed565b5b5f611beb84828501611bb5565b91505092915050565b7f496e73756666696369656e7420524f424f542062616c616e63650000000000005f82015250565b5f611c28601a83611609565b9150611c3382611bf4565b602082019050919050565b5f6020820190508181035f830152611c5581611c1c565b9050919050565b7f496e73756666696369656e742045544820696e20636f6e7472616374000000005f82015250565b5f611c90601c83611609565b9150611c9b82611c5c565b602082019050919050565b5f6020820190508181035f830152611cbd81611c84565b9050919050565b5f606082019050611cd75f8301866114ea565b611ce460208301856114ea565b611cf1604083018461154e565b949350505050565b611d0281611512565b8114611d0c575f80fd5b50565b5f81519050611d1d81611cf9565b92915050565b5f60208284031215611d3857611d376113ed565b5b5f611d4584828501611d0f565b91505092915050565b7f546f6b656e207472616e73666572206661696c656400000000000000000000005f82015250565b5f611d82601583611609565b9150611d8d82611d4e565b602082019050919050565b5f6020820190508181035f830152611daf81611d76565b9050919050565b5f608082019050611dc95f83018761154e565b611dd6602083018661154e565b611de3604083018561154e565b611df060608301846114ea565b95945050505050565b7f537570706c79206d7573742062652067726561746572207468616e20300000005f82015250565b5f611e2d601d83611609565b9150611e3882611df9565b602082019050919050565b5f6020820190508181035f830152611e5a81611e21565b9050919050565b7f496e76616c696420737570706c790000000000000000000000000000000000005f82015250565b5f611e95600e83611609565b9150611ea082611e61565b602082019050919050565b5f6020820190508181035f830152611ec281611e89565b905091905056fea2646970667358221220840294e7664975333f8266a4e9dfc9c420807025b84fc15ba045eb6bce5e20d864736f6c634300081a0033000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb
Deployed Bytecode
0x608060405260043610610129575f3560e01c806376074b35116100aa57806394f820c41161006e57806394f820c414610367578063b17640711461038f578063b8520cec146103b7578063d2d562a4146103e1578063e9f26abc1461040b578063f2fde38b1461043557610129565b806376074b35146102ab5780638d044c06146102e75780638da5cb5b146102fd57806392bccb80146103275780639358928b1461033d57610129565b80635c975abb116100f15780635c975abb146101c95780635ff17d7c146101f3578063619a30981461022f5780636bf9ed591461026b578063715018a61461029557610129565b80630434bfbc1461012d57806325e1606314610143578063281155ba1461016b57806339c5f434146101755780634e6fd6c41461019f575b5f80fd5b348015610138575f80fd5b5061014161045d565b005b34801561014e575f80fd5b506101696004803603810190610164919061144b565b610568565b005b610173610795565b005b348015610180575f80fd5b50610189610841565b60405161019691906114d1565b60405180910390f35b3480156101aa575f80fd5b506101b3610867565b6040516101c091906114f9565b60405180910390f35b3480156101d4575f80fd5b506101dd61086d565b6040516101ea919061152c565b60405180910390f35b3480156101fe575f80fd5b506102196004803603810190610214919061144b565b610882565b604051610226919061155d565b60405180910390f35b34801561023a575f80fd5b506102556004803603810190610250919061144b565b6108c8565b604051610262919061155d565b60405180910390f35b348015610276575f80fd5b5061027f6108dd565b60405161028c919061155d565b60405180910390f35b3480156102a0575f80fd5b506102a96108e3565b005b3480156102b6575f80fd5b506102d160048036038101906102cc91906115a0565b6108f6565b6040516102de919061155d565b60405180910390f35b3480156102f2575f80fd5b506102fb610919565b005b348015610308575f80fd5b506103116109c5565b60405161031e91906114f9565b60405180910390f35b348015610332575f80fd5b5061033b6109ec565b005b348015610348575f80fd5b50610351610a06565b60405161035e919061155d565b60405180910390f35b348015610372575f80fd5b5061038d600480360381019061038891906115cb565b610a0c565b005b34801561039a575f80fd5b506103b560048036038101906103b091906115a0565b610ea2565b005b3480156103c2575f80fd5b506103cb61104d565b6040516103d8919061152c565b60405180910390f35b3480156103ec575f80fd5b506103f561105f565b604051610402919061155d565b60405180910390f35b348015610416575f80fd5b5061041f611065565b60405161042c919061152c565b60405180910390f35b348015610440575f80fd5b5061045b6004803603810190610456919061144b565b611087565b005b61046561110b565b61046d611192565b5f600354116104b1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104a890611663565b60405180910390fd5b5f600454116104f5576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104ec906116cb565b60405180910390fd5b600160075f6101000a81548160ff0219169083151502179055506301e133804261051f9190611716565b6006819055507f4c67bda6d80af2a8e879e8df18fbda2cf6df45ff7958d9e6bb55f522ea476629600654604051610556919061155d565b60405180910390a16105666111d2565b565b61057061110b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036105de576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016105d590611793565b60405180910390fd5b60075f9054906101000a900460ff1615806105fa575060065442115b610639576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161063090611821565b60405180910390fd5b5f4790505f811161067f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161067690611889565b60405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff16826040516106a4906118d4565b5f6040518083038185875af1925050503d805f81146106de576040519150601f19603f3d011682016040523d82523d5f602084013e6106e3565b606091505b5050905080610727576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161071e90611932565b60405180910390fd5b60075f9054906101000a900460ff16610742575f6003819055505b8273ffffffffffffffffffffffffffffffffffffffff167f8455ae6be5d92f1df1c3c1484388e247a36c7e60d72055ae216dbc258f257d4b83604051610788919061155d565b60405180910390a2505050565b61079d61110b565b60075f9054906101000a900460ff16156107ec576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016107e39061199a565b60405180910390fd5b3460035f8282546107fd9190611716565b925050819055507ff5e4934928a1e45d88c7a5aa2661fe0a801ca5017922e15122d74f1880155e1a346003546040516108379291906119b8565b60405180910390a1565b600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61dead81565b5f60025f9054906101000a900460ff16905090565b5f60055f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6005602052805f5260405f205f915090505481565b60065481565b6108eb61110b565b6108f45f611233565b565b5f6004546003548361090891906119df565b6109129190611a4d565b9050919050565b61092161110b565b610929611192565b60075f9054906101000a900460ff16610977576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161096e90611ac7565b60405180910390fd5b60065442106109bb576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016109b290611b2f565b60405180910390fd5b6109c36111d2565b565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6109f461110b565b6109fc6112f4565b610a04611335565b565b60045481565b610a14611397565b610a1c6112f4565b60075f9054906101000a900460ff16610a6a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a6190611ac7565b60405180910390fd5b5f8211610aac576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610aa390611b97565b60405180910390fd5b81600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231336040518263ffffffff1660e01b8152600401610b0891906114f9565b602060405180830381865afa158015610b23573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b479190611bc9565b1015610b88576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b7f90611c3e565b60405180910390fd5b5f8073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614610bc25781610bc4565b335b90505f60045460035485610bd891906119df565b610be29190611a4d565b905080471015610c27576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c1e90611ca6565b60405180910390fd5b8360055f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f828254610c739190611716565b92505081905550600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166323b872dd3361dead876040518463ffffffff1660e01b8152600401610cdb93929190611cc4565b6020604051808303815f875af1158015610cf7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d1b9190611d23565b610d5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5190611d98565b60405180910390fd5b5f3373ffffffffffffffffffffffffffffffffffffffff1682604051610d7f906118d4565b5f6040518083038185875af1925050503d805f8114610db9576040519150601f19603f3d011682016040523d82523d5f602084013e610dbe565b606091505b5050905080610e02576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610df990611932565b60405180910390fd5b3373ffffffffffffffffffffffffffffffffffffffff167f4cbaede2de574837e61a98a30aa5d7353c76facef958abbb7768c4c46ff612d98660055f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20548587604051610e8b9493929190611db6565b60405180910390a2505050610e9e6113dd565b5050565b610eaa61110b565b60075f9054906101000a900460ff1615610ef9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610ef09061199a565b60405180910390fd5b5f8111610f3b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f3290611e43565b60405180910390fd5b600260019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610fa6573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fca9190611bc9565b81111561100c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161100390611eab565b60405180910390fd5b806004819055507f6c94155fc9c34df6d34964ca1f93e622bb7ddc5232996336d7a838266c159f7381604051611042919061155d565b60405180910390a150565b60075f9054906101000a900460ff1681565b60035481565b5f60075f9054906101000a900460ff168015611082575060065442115b905090565b61108f61110b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036110ff575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016110f691906114f9565b60405180910390fd5b61110881611233565b50565b6111136113e6565b73ffffffffffffffffffffffffffffffffffffffff166111316109c5565b73ffffffffffffffffffffffffffffffffffffffff1614611190576111546113e6565b6040517f118cdaa700000000000000000000000000000000000000000000000000000000815260040161118791906114f9565b60405180910390fd5b565b61119a61086d565b6111d0576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b6111da611192565b5f60025f6101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa61121c6113e6565b60405161122991906114f9565b60405180910390a1565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b6112fc61086d565b15611333576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b61133d6112f4565b600160025f6101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586113806113e6565b60405161138d91906114f9565b60405180910390a1565b6002600154036113d3576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600181905550565b60018081905550565b5f33905090565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61141a826113f1565b9050919050565b61142a81611410565b8114611434575f80fd5b50565b5f8135905061144581611421565b92915050565b5f602082840312156114605761145f6113ed565b5b5f61146d84828501611437565b91505092915050565b5f819050919050565b5f61149961149461148f846113f1565b611476565b6113f1565b9050919050565b5f6114aa8261147f565b9050919050565b5f6114bb826114a0565b9050919050565b6114cb816114b1565b82525050565b5f6020820190506114e45f8301846114c2565b92915050565b6114f381611410565b82525050565b5f60208201905061150c5f8301846114ea565b92915050565b5f8115159050919050565b61152681611512565b82525050565b5f60208201905061153f5f83018461151d565b92915050565b5f819050919050565b61155781611545565b82525050565b5f6020820190506115705f83018461154e565b92915050565b61157f81611545565b8114611589575f80fd5b50565b5f8135905061159a81611576565b92915050565b5f602082840312156115b5576115b46113ed565b5b5f6115c28482850161158c565b91505092915050565b5f80604083850312156115e1576115e06113ed565b5b5f6115ee8582860161158c565b92505060206115ff85828601611437565b9150509250929050565b5f82825260208201905092915050565b7f4e6f2045544820616c6c6f636174656420666f7220726564656d7074696f6e735f82015250565b5f61164d602083611609565b915061165882611619565b602082019050919050565b5f6020820190508181035f83015261167a81611641565b9050919050565b7f43697263756c6174696e6720737570706c79206e6f74207365740000000000005f82015250565b5f6116b5601a83611609565b91506116c082611681565b602082019050919050565b5f6020820190508181035f8301526116e2816116a9565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61172082611545565b915061172b83611545565b9250828201905080821115611743576117426116e9565b5b92915050565b7f496e76616c696420726563697069656e740000000000000000000000000000005f82015250565b5f61177d601183611609565b915061178882611749565b602082019050919050565b5f6020820190508181035f8301526117aa81611771565b9050919050565b7f43616e6e6f7420776974686472617720647572696e67206163746976652072655f8201527f64656d7074696f6e000000000000000000000000000000000000000000000000602082015250565b5f61180b602883611609565b9150611816826117b1565b604082019050919050565b5f6020820190508181035f830152611838816117ff565b9050919050565b7f4e6f2045544820746f20776974686472617700000000000000000000000000005f82015250565b5f611873601283611609565b915061187e8261183f565b602082019050919050565b5f6020820190508181035f8301526118a081611867565b9050919050565b5f81905092915050565b50565b5f6118bf5f836118a7565b91506118ca826118b1565b5f82019050919050565b5f6118de826118b4565b9150819050919050565b7f455448207472616e73666572206661696c6564000000000000000000000000005f82015250565b5f61191c601383611609565b9150611927826118e8565b602082019050919050565b5f6020820190508181035f83015261194981611910565b9050919050565b7f526564656d7074696f6e20616c726561647920616374697661746564000000005f82015250565b5f611984601c83611609565b915061198f82611950565b602082019050919050565b5f6020820190508181035f8301526119b181611978565b9050919050565b5f6040820190506119cb5f83018561154e565b6119d8602083018461154e565b9392505050565b5f6119e982611545565b91506119f483611545565b9250828202611a0281611545565b91508282048414831517611a1957611a186116e9565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f611a5782611545565b9150611a6283611545565b925082611a7257611a71611a20565b5b828204905092915050565b7f526564656d7074696f6e206e6f742061637469766174656420796574000000005f82015250565b5f611ab1601c83611609565b9150611abc82611a7d565b602082019050919050565b5f6020820190508181035f830152611ade81611aa5565b9050919050565b7f526564656d7074696f6e20706572696f642068617320656e64656400000000005f82015250565b5f611b19601b83611609565b9150611b2482611ae5565b602082019050919050565b5f6020820190508181035f830152611b4681611b0d565b9050919050565b7f416d6f756e74206d7573742062652067726561746572207468616e20300000005f82015250565b5f611b81601d83611609565b9150611b8c82611b4d565b602082019050919050565b5f6020820190508181035f830152611bae81611b75565b9050919050565b5f81519050611bc381611576565b92915050565b5f60208284031215611bde57611bdd6113ed565b5b5f611beb84828501611bb5565b91505092915050565b7f496e73756666696369656e7420524f424f542062616c616e63650000000000005f82015250565b5f611c28601a83611609565b9150611c3382611bf4565b602082019050919050565b5f6020820190508181035f830152611c5581611c1c565b9050919050565b7f496e73756666696369656e742045544820696e20636f6e7472616374000000005f82015250565b5f611c90601c83611609565b9150611c9b82611c5c565b602082019050919050565b5f6020820190508181035f830152611cbd81611c84565b9050919050565b5f606082019050611cd75f8301866114ea565b611ce460208301856114ea565b611cf1604083018461154e565b949350505050565b611d0281611512565b8114611d0c575f80fd5b50565b5f81519050611d1d81611cf9565b92915050565b5f60208284031215611d3857611d376113ed565b5b5f611d4584828501611d0f565b91505092915050565b7f546f6b656e207472616e73666572206661696c656400000000000000000000005f82015250565b5f611d82601583611609565b9150611d8d82611d4e565b602082019050919050565b5f6020820190508181035f830152611daf81611d76565b9050919050565b5f608082019050611dc95f83018761154e565b611dd6602083018661154e565b611de3604083018561154e565b611df060608301846114ea565b95945050505050565b7f537570706c79206d7573742062652067726561746572207468616e20300000005f82015250565b5f611e2d601d83611609565b9150611e3882611df9565b602082019050919050565b5f6020820190508181035f830152611e5a81611e21565b9050919050565b7f496e76616c696420737570706c790000000000000000000000000000000000005f82015250565b5f611e95600e83611609565b9150611ea082611e61565b602082019050919050565b5f6020820190508181035f830152611ec281611e89565b905091905056fea2646970667358221220840294e7664975333f8266a4e9dfc9c420807025b84fc15ba045eb6bce5e20d864736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb
-----Decoded View---------------
Arg [0] : _robotToken (address): 0xfb5453340C03db5aDe474b27E68B6a9c6b2823Eb
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb
Loading...
Loading
Loading...
Loading
Net Worth in USD
$132,413.92
Net Worth in ETH
59.165119
Token Allocations
ETH
100.00%
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| ETH | 100.00% | $2,238.04 | 59.1651 | $132,413.92 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.