ETH Price: $1,884.59 (-12.18%)
 

Overview

Max Total Supply

20,793,255,250.601148091668 DOP

Holders

19,182 (0.00%)

Transfers

-
6

Market

Price

$0.00 @ 0.000001 ETH (-17.64%)

Onchain Market Cap

$52,964,995.64

Circulating Supply Market Cap

$6,652,714.00

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

DOP enables enterprises to transfer digital assets with confidence. Payments pass KYT screening, remain confidential on-chain, and produce instant audit proofs. From payroll to treasury, teams gain privacy and compliance—all from one intuitive dashboard.

Market

Volume (24H):$553,764.00
Market Capitalization:$6,652,714.00
Circulating Supply:2,611,756,526.00 DOP
Market Data Source: Coinmarketcap

# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
DOP

Compiler Version
v0.8.29+commit.ab55807c

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: MIT

pragma solidity 0.8.29;

import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { ERC20Burnable } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import { ERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";

import { IAccumulator } from "./interfaces/IAccumulator.sol";
import { IDOP } from "./interfaces/IDOP.sol";
import { IERC20Burnable } from "./interfaces/IERC20Burnable.sol";

// prettier-ignore
import {
    _BLOCKS_PER_CYCLE,
    SetState,
    UpdateAccumulator,
    UpdateDedicatedCaller,
    CycleDesync,
    IndexOutOfBounds,
    InvalidAddress,
    InvalidArrayLength,
    InvalidAssignment,
    InvalidValue,
    NextCycleNotStarted,
    UnauthorizedAccount,
    _revert
} from "./utils/Globals.sol";

/**
 * @title DOP.
 * @author DOP Team.
 * @notice Data Ownership Protocol token.
 */
contract DOP is Ownable, ERC20Burnable, ERC20Permit, IDOP {
    /* ========================== STATE VARIABLES ========================== */

    /// @inheritdoc IDOP
    uint256 public nextCycle;

    /// @inheritdoc IDOP
    uint256 public nextCycleStartBlockNumber;

    /// @inheritdoc IDOP
    address public treasury;

    /// @inheritdoc IDOP
    address public dedicatedCaller;

    /// @inheritdoc IDOP
    IAccumulator public accumulator;

    /// @inheritdoc IDOP
    bool public isTransferEnabled;

    /// @inheritdoc IDOP
    Table[] public inflationTable;

    /// @inheritdoc IDOP
    mapping(address => bool) public initiallyAllowed;

    /* ========================== CONSTRUCTOR ========================== */

    /**
     * @dev Constructor. Assigns ownership and initializes variables.
     * @param initialOwner_ Address to which tokens will be initially minted.
     * @param startBlockNumber_ Block number at which unlock will start.
     * @param treasury_ Address of the DAO treasury.
     * @param dedicatedCaller_ Address of the dedicated caller.
     * @param inflationTable_ Inflation thresholds and data.
     * @param initiallyAllowed_ Addresses to allow transfer initially.
     * @param initialSupply_ Tokens to mint initially.
     */
    constructor(
        address initialOwner_,
        uint256 startBlockNumber_,
        address treasury_,
        address dedicatedCaller_,
        Table[] memory inflationTable_,
        address[] memory initiallyAllowed_,
        uint256 initialSupply_
    ) Ownable(initialOwner_) ERC20("Data Ownership Protocol", "DOP") ERC20Permit("Data Ownership Protocol") {
        if (startBlockNumber_ == 0 || initialSupply_ == 0) {
            _revert(InvalidValue.selector);
        }

        nextCycleStartBlockNumber = startBlockNumber_;

        _updateTreasury(treasury_);
        _updateDedicatedCaller(dedicatedCaller_);

        uint256 inflationTableLength = inflationTable_.length;

        for (uint256 i; i < inflationTableLength; ++i) {
            _setInflationTable(SetState.ADD, 0, inflationTable_[i]);
        }

        uint256 initiallyAllowedLength = initiallyAllowed_.length;

        for (uint256 i; i < initiallyAllowedLength; ++i) {
            _updateAccountState(initiallyAllowed_[i], true);
        }

        if (inflationTableLength == 0 || initiallyAllowedLength == 0) {
            _revert(InvalidArrayLength.selector);
        }

        _mint(initialOwner_, initialSupply_);
    }

    /* ========================== FUNCTIONS ========================== */

    /**
     * @inheritdoc IDOP
     */
    function fund() external {
        if (msg.sender != dedicatedCaller) {
            _revert(UnauthorizedAccount.selector);
        }

        uint256 cycle = nextCycle++;

        if (cycle != accumulator.nextCycle()) {
            _revert(CycleDesync.selector);
        }

        if (block.number < nextCycleStartBlockNumber) {
            _revert(NextCycleNotStarted.selector);
        }

        nextCycleStartBlockNumber += _BLOCKS_PER_CYCLE;

        (uint256 cumulativePrice, uint256 count) = accumulator.getAccumulation(cycle);
        uint256 twapPrice = cumulativePrice / count;

        uint256 fullyDilutedMarketCap = (twapPrice * totalSupply()) / 1e36;
        uint256 inflationTableLength = inflationTable.length;
        uint256 amount;

        for (uint256 i; i < inflationTableLength; ++i) {
            Table memory table = inflationTable[i];

            if (table.lowerLimit <= fullyDilutedMarketCap && fullyDilutedMarketCap < table.upperLimit) {
                amount = (totalSupply() * table.rate) / 100;

                break;
            }
        }

        _mint(treasury, amount);

        emit Fund({
            twapPrice: twapPrice,
            cycle: cycle,
            cycleStartBlockNumber: block.number,
            cycleEndBlockNumber: nextCycleStartBlockNumber,
            fullyDilutedMarketCap: fullyDilutedMarketCap,
            amount: amount
        });
    }

    /**
     * @inheritdoc IDOP
     */
    function enableTransfer() external onlyOwner {
        if (isTransferEnabled) {
            _revert(AlreadyEnabled.selector);
        }

        isTransferEnabled = true;

        emit TransfersEnabled();
    }

    /**
     * @inheritdoc IDOP
     */
    function updateTreasury(address newTreasury) external onlyOwner {
        _updateTreasury(newTreasury);
    }

    /**
     * @inheritdoc IDOP
     */
    function updateDedicatedCaller(address newDedicatedCaller) external onlyOwner {
        _updateDedicatedCaller(newDedicatedCaller);
    }

    /**
     * @inheritdoc IDOP
     */
    function updateAccumulator(IAccumulator newAccumulator) external onlyOwner {
        if (address(newAccumulator) == address(0)) {
            _revert(InvalidAddress.selector);
        }

        if (newAccumulator == accumulator) {
            _revert(InvalidAssignment.selector);
        }

        emit UpdateAccumulator({ newAccumulator: address(newAccumulator), oldAccumulator: address(accumulator) });

        accumulator = newAccumulator;
    }

    /**
     * @inheritdoc IDOP
     */
    function setInflationTable(SetState setState, uint256 index, Table memory newTable) external onlyOwner {
        _setInflationTable(setState, index, newTable);
    }

    /**
     * @inheritdoc IDOP
     */
    function updateAccountState(address account, bool state) external onlyOwner {
        _updateAccountState(account, state);
    }

    /**
     * @inheritdoc ERC20Burnable
     */
    function burn(uint256 value) public override(ERC20Burnable, IERC20Burnable) {
        super.burn(value);
    }

    /**
     * @inheritdoc ERC20Burnable
     */
    function burnFrom(address account, uint256 value) public override(ERC20Burnable, IERC20Burnable) {
        super.burnFrom(account, value);
    }

    /**
     * @inheritdoc ERC20
     * @dev Overridden to check if transfer is allowed.
     */
    function _update(address from, address to, uint256 value) internal override {
        if (from != address(0) && !isTransferEnabled && !initiallyAllowed[from]) {
            _revert(TransferNotAllowed.selector);
        }

        super._update(from, to, value);
    }

    /**
     * @dev Implements {updateTreasury} logic.
     * @param newTreasury Address of the new DAO treasury.
     */
    function _updateTreasury(address newTreasury) private {
        if (newTreasury == address(0)) {
            _revert(InvalidAddress.selector);
        }

        if (newTreasury == treasury) {
            _revert(InvalidAssignment.selector);
        }

        emit UpdateTreasury({ newTreasury: newTreasury, oldTreasury: treasury });

        treasury = newTreasury;
    }

    /**
     * @dev Implements {updateDedicatedCaller} logic.
     * @param newDedicatedCaller Address of the new dedicated caller.
     */
    function _updateDedicatedCaller(address newDedicatedCaller) private {
        if (newDedicatedCaller == address(0)) {
            _revert(InvalidAddress.selector);
        }

        if (newDedicatedCaller == dedicatedCaller) {
            _revert(InvalidAssignment.selector);
        }

        emit UpdateDedicatedCaller({ newDedicatedCaller: newDedicatedCaller, oldDedicatedCaller: dedicatedCaller });

        dedicatedCaller = newDedicatedCaller;
    }

    /**
     * @dev Implements {setInflationTable} logic.
     * @param setState Operation type (ADD, REMOVE, or UPDATE).
     * @param index Index of the table entry (used for REMOVE, and UPDATE).
     * @param newTable Table entry (used for ADD, and UPDATE).
     */
    function _setInflationTable(SetState setState, uint256 index, Table memory newTable) private {
        uint256 inflationTableLength = inflationTable.length;
        bool checkIndex = setState != SetState.ADD;

        if (checkIndex && index >= inflationTableLength) {
            _revert(IndexOutOfBounds.selector);
        }

        bool checkNewTable = setState != SetState.REMOVE;

        if (checkNewTable) {
            if (newTable.lowerLimit >= newTable.upperLimit) {
                _revert(RangeMalformed.selector);
            }

            for (uint256 i; i < inflationTableLength; ++i) {
                bool checkOverlap = setState == SetState.ADD || (setState == SetState.UPDATE && i != index);

                Table memory table = inflationTable[i];

                if (checkOverlap && newTable.lowerLimit < table.upperLimit && table.lowerLimit < newTable.upperLimit) {
                    _revert(RangeOverlap.selector);
                }
            }
        }

        if (setState == SetState.ADD) {
            inflationTable.push(newTable);

            emit AddInflationTable({ newTable: newTable });
        } else if (setState == SetState.REMOVE) {
            uint256 lastIndex = inflationTableLength - 1;

            if (index != lastIndex) {
                inflationTable[index] = inflationTable[lastIndex];
            }

            inflationTable.pop();

            emit RemoveInflationTable({ index: index });
        } else if (setState == SetState.UPDATE) {
            emit UpdateInflationTable({ index: index, newTable: newTable, oldTable: inflationTable[index] });

            inflationTable[index] = newTable;
        }
    }

    /**
     * @dev Implements {updateAccountState} logic.
     * @param account Address to be added or removed from the initially allowed list.
     * @param state New status of the address.
     */
    function _updateAccountState(address account, bool state) private {
        if (initiallyAllowed[account] != state) {
            initiallyAllowed[account] = state;

            emit AllowListUpdated({ account: account, state: state });
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

// solhint-disable-next-line interface-starts-with-i
interface AggregatorV3Interface {
  function decimals() external view returns (uint8);

  function description() external view returns (string memory);

  function version() external view returns (uint256);

  function getRoundData(
    uint80 _roundId
  ) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);

  function latestRoundData()
    external
    view
    returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 5 of 35 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @inheritdoc IERC5267
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 16 of 35 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 17 of 35 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

File 24 of 35 : IUniswapV3Pool.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import './pool/IUniswapV3PoolImmutables.sol';
import './pool/IUniswapV3PoolState.sol';
import './pool/IUniswapV3PoolDerivedState.sol';
import './pool/IUniswapV3PoolActions.sol';
import './pool/IUniswapV3PoolOwnerActions.sol';
import './pool/IUniswapV3PoolEvents.sol';

/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
    IUniswapV3PoolImmutables,
    IUniswapV3PoolState,
    IUniswapV3PoolDerivedState,
    IUniswapV3PoolActions,
    IUniswapV3PoolOwnerActions,
    IUniswapV3PoolEvents
{

}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
    /// @notice Sets the initial price for the pool
    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
    function initialize(uint160 sqrtPriceX96) external;

    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
    /// @param recipient The address for which the liquidity will be created
    /// @param tickLower The lower tick of the position in which to add liquidity
    /// @param tickUpper The upper tick of the position in which to add liquidity
    /// @param amount The amount of liquidity to mint
    /// @param data Any data that should be passed through to the callback
    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
    function mint(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount,
        bytes calldata data
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Collects tokens owed to a position
    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
    /// @param recipient The address which should receive the fees collected
    /// @param tickLower The lower tick of the position for which to collect fees
    /// @param tickUpper The upper tick of the position for which to collect fees
    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
    /// @dev Fees must be collected separately via a call to #collect
    /// @param tickLower The lower tick of the position for which to burn liquidity
    /// @param tickUpper The upper tick of the position for which to burn liquidity
    /// @param amount How much liquidity to burn
    /// @return amount0 The amount of token0 sent to the recipient
    /// @return amount1 The amount of token1 sent to the recipient
    function burn(
        int24 tickLower,
        int24 tickUpper,
        uint128 amount
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Swap token0 for token1, or token1 for token0
    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
    /// @param recipient The address to receive the output of the swap
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
    /// @param recipient The address which will receive the token0 and token1 amounts
    /// @param amount0 The amount of token0 to send
    /// @param amount1 The amount of token1 to send
    /// @param data Any data to be passed through to the callback
    function flash(
        address recipient,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;

    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
    /// the input observationCardinalityNext.
    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
    /// you must call it with secondsAgos = [3600, 0].
    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
    /// timestamp
    function observe(uint32[] calldata secondsAgos)
        external
        view
        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);

    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
    /// snapshot is taken and the second snapshot is taken.
    /// @param tickLower The lower tick of the range
    /// @param tickUpper The upper tick of the range
    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
    /// @return secondsInside The snapshot of seconds per liquidity for the range
    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
        external
        view
        returns (
            int56 tickCumulativeInside,
            uint160 secondsPerLiquidityInsideX128,
            uint32 secondsInside
        );
}

File 27 of 35 : IUniswapV3PoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
    event Initialize(uint160 sqrtPriceX96, int24 tick);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param sender The address that minted the liquidity
    /// @param owner The owner of the position and recipient of any minted liquidity
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity minted to the position range
    /// @param amount0 How much token0 was required for the minted liquidity
    /// @param amount1 How much token1 was required for the minted liquidity
    event Mint(
        address sender,
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted when fees are collected by the owner of a position
    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
    /// @param owner The owner of the position for which fees are collected
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount0 The amount of token0 fees collected
    /// @param amount1 The amount of token1 fees collected
    event Collect(
        address indexed owner,
        address recipient,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount0,
        uint128 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
    /// @param owner The owner of the position for which liquidity is removed
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity to remove
    /// @param amount0 The amount of token0 withdrawn
    /// @param amount1 The amount of token1 withdrawn
    event Burn(
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted by the pool for any swaps between token0 and token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the output of the swap
    /// @param amount0 The delta of the token0 balance of the pool
    /// @param amount1 The delta of the token1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of price of the pool after the swap
    event Swap(
        address indexed sender,
        address indexed recipient,
        int256 amount0,
        int256 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick
    );

    /// @notice Emitted by the pool for any flashes of token0/token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the tokens from flash
    /// @param amount0 The amount of token0 that was flashed
    /// @param amount1 The amount of token1 that was flashed
    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
    event Flash(
        address indexed sender,
        address indexed recipient,
        uint256 amount0,
        uint256 amount1,
        uint256 paid0,
        uint256 paid1
    );

    /// @notice Emitted by the pool for increases to the number of observations that can be stored
    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
    /// just before a mint/swap/burn.
    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    /// @notice Emitted when the protocol fee is changed by the pool
    /// @param feeProtocol0Old The previous value of the token0 protocol fee
    /// @param feeProtocol1Old The previous value of the token1 protocol fee
    /// @param feeProtocol0New The updated value of the token0 protocol fee
    /// @param feeProtocol1New The updated value of the token1 protocol fee
    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);

    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
    /// @param sender The address that collects the protocol fees
    /// @param recipient The address that receives the collected protocol fees
    /// @param amount0 The amount of token0 protocol fees that is withdrawn
    /// @param amount0 The amount of token1 protocol fees that is withdrawn
    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
    /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
    /// @return The contract address
    function factory() external view returns (address);

    /// @notice The first of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token0() external view returns (address);

    /// @notice The second of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token1() external view returns (address);

    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
    /// @return The fee
    function fee() external view returns (uint24);

    /// @notice The pool tick spacing
    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
    /// This value is an int24 to avoid casting even though it is always positive.
    /// @return The tick spacing
    function tickSpacing() external view returns (int24);

    /// @notice The maximum amount of position liquidity that can use any tick in the range
    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
    /// @return The max amount of liquidity per tick
    function maxLiquidityPerTick() external view returns (uint128);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
    /// @notice Set the denominator of the protocol's % share of the fees
    /// @param feeProtocol0 new protocol fee for token0 of the pool
    /// @param feeProtocol1 new protocol fee for token1 of the pool
    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;

    /// @notice Collect the protocol fee accrued to the pool
    /// @param recipient The address to which collected protocol fees should be sent
    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
    /// @return amount0 The protocol fee collected in token0
    /// @return amount1 The protocol fee collected in token1
    function collectProtocol(
        address recipient,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
    /// when accessed externally.
    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
    /// boundary.
    /// observationIndex The index of the last oracle observation that was written,
    /// observationCardinality The current maximum number of observations stored in the pool,
    /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
    /// feeProtocol The protocol fee for both tokens of the pool.
    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
    /// unlocked Whether the pool is currently locked to reentrancy
    function slot0()
        external
        view
        returns (
            uint160 sqrtPriceX96,
            int24 tick,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext,
            uint8 feeProtocol,
            bool unlocked
        );

    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal0X128() external view returns (uint256);

    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal1X128() external view returns (uint256);

    /// @notice The amounts of token0 and token1 that are owed to the protocol
    /// @dev Protocol fees will never exceed uint128 max in either token
    function protocolFees() external view returns (uint128 token0, uint128 token1);

    /// @notice The currently in range liquidity available to the pool
    /// @dev This value has no relationship to the total liquidity across all ticks
    function liquidity() external view returns (uint128);

    /// @notice Look up information about a specific tick in the pool
    /// @param tick The tick to look up
    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
    /// tick upper,
    /// liquidityNet how much liquidity changes when the pool price crosses the tick,
    /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
    /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
    /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
    /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
    /// secondsOutside the seconds spent on the other side of the tick from the current tick,
    /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
    /// a specific position.
    function ticks(int24 tick)
        external
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128,
            int56 tickCumulativeOutside,
            uint160 secondsPerLiquidityOutsideX128,
            uint32 secondsOutside,
            bool initialized
        );

    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
    function tickBitmap(int16 wordPosition) external view returns (uint256);

    /// @notice Returns the information about a position by the position's key
    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
    /// @return _liquidity The amount of liquidity in the position,
    /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
    /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
    /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
    /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
    function positions(bytes32 key)
        external
        view
        returns (
            uint128 _liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns data about a specific observation index
    /// @param index The element of the observations array to fetch
    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
    /// ago, rather than at a specific index in the array.
    /// @return blockTimestamp The timestamp of the observation,
    /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
    /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
    /// Returns initialized whether the observation has been initialized and the values are safe to use
    function observations(uint256 index)
        external
        view
        returns (
            uint32 blockTimestamp,
            int56 tickCumulative,
            uint160 secondsPerLiquidityCumulativeX128,
            bool initialized
        );
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { AggregatorV3Interface } from "@chainlink/contracts/src/v0.8/shared/interfaces/AggregatorV3Interface.sol";

import { IUniswapV3Pool } from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";

import { SetState } from "../utils/Globals.sol";

import { ICycleTracker } from "./ICycleTracker.sol";
import { IDOP } from "./IDOP.sol";

/**
 * @title IAccumulator.
 * @author DOP Team.
 * @notice Interface for the price aggregate accumulator contract.
 */
interface IAccumulator {
    /* ========================== TYPES ========================== */

    /// @dev Respresents the data to be compiled for accumulations.
    struct Accumulation {
        /// @custom:member Accumulated price.
        uint256 cumulativePrice;
        /// @custom:member Number of accumulations.
        uint256 count;
    }

    /// @dev Respresents the data to be processed from the price feed aggregator.
    struct PriceFeedResponse {
        /// @custom:member Status of the retrieved data.
        bool success;
        /// @custom:member ID from the aggregator for which the data was retrieved combined with a phase to ensure that
        /// round IDs get larger as time moves forward.
        uint80 roundId;
        /// @custom:member Price in the given round.
        int256 answer;
        /// @custom:member Timestamp when the round was started.
        uint256 updatedAt;
    }

    /* ========================== EVENTS ========================== */

    /// @dev Emitted when a new cycle is started.
    event BumpCycle(uint256 cycle, uint256 cycleStartBlockNumber, uint256 cycleEndBlockNumber);

    /// @dev Emitted when a snapshot is performed.
    event Snapshot(uint256 snapshotPrice, uint256 cycle, uint256 cumulativePrice, uint256 count);

    /// @dev Emitted when price feed and its subsequent timeout is changed to `newPriceFeed` and `newPriceFeedTimeout`
    /// from `oldPriceFeed` and `oldPriceFeedTimeout`.
    event UpdatePriceFeed(
        address indexed newPriceFeed,
        address indexed oldPriceFeed,
        uint256 newPriceFeedTimeout,
        uint256 oldPriceFeedTimeout
    );

    /// @dev Emitted when underlying pool is changed to `newPool` from `oldPool`.
    event UpdatePool(address indexed newPool, address indexed oldPool);

    /// @dev Emitted when a cycle tracker `newCycleTracker` is added to the list of cycle trackers.
    event AddCycleTracker(ICycleTracker newCycleTracker);

    /// @dev Emitted when the cycle tracker at `index` is removed from the list of cycle trackers.
    event RemoveCycleTracker(uint256 index);

    /// @dev Emitted when the cycle tracker at `index` is changed to `newCycleTracker` from `oldCycleTracker`.
    event UpdateCycleTracker(uint256 index, ICycleTracker newCycleTracker, ICycleTracker oldCycleTracker);

    /* ========================== ERRORS ========================== */

    /// @dev Indicates a failure when updating the UniswapV3 pool if it is not a pool of the designated token.
    error NotDesignatedPool();

    /// @dev Indicates a failure with the price if it is stale.
    error StalePrice();

    /// @dev Indicates a failure if the observed tick within a given time frame is `0`.
    error TickUnavailable();

    /* ========================== FUNCTIONS ========================== */

    /**
     * @notice Address of the DOP token.
     */
    function DOP() external view returns (IDOP);

    /**
     * @notice Denomination of the retrieved price.
     */
    function priceDecimals() external view returns (uint8);

    /**
     * @notice Timeout in seconds to use with the price feed.
     */
    function priceFeedTimeout() external view returns (uint256);

    /**
     * @notice Index of the next cycle.
     */
    function nextCycle() external view returns (uint256);

    /**
     * @notice Block number at which the next cycle will start.
     */
    function nextCycleStartBlockNumber() external view returns (uint256);

    /**
     * @notice Address of the dedicated caller.
     */
    function dedicatedCaller() external view returns (address);

    /**
     * @notice Address of the price feed.
     */
    function priceFeed() external view returns (AggregatorV3Interface);

    /**
     * @notice Address of the underlying pool.
     */
    function pool() external view returns (IUniswapV3Pool);

    /**
     * @notice Addresses of the cycle trackers.
     * @param index Index of the required cycle tracker.
     * @return cycleTracker Address of the cycle tracker.
     */
    function cycleTrackers(uint256 index) external view returns (ICycleTracker cycleTracker);

    /**
     * @notice Snapshots accumulated for each cycle.
     * @param cycle Cycle number.
     * @return cumulativePrice Accumulated price.
     * @return count Number of accumulations.
     */
    function getAccumulation(uint256 cycle) external view returns (uint256 cumulativePrice, uint256 count);

    /**
     * @notice Gets the snapshot price and accumulates it for calculations in the next cycle.
     * NOTE: Only dedicated caller can call this function.
     * @param twapInterval Time interval for the observed TWAP.
     */
    function snapshot(uint32 twapInterval) external;

    /**
     * @notice Bumps the cycle.
     * NOTE: Only dedicated caller can call this function.
     */
    function bumpCycle() external;

    /**
     * @notice Updates the address of the dedicated caller.
     * NOTE: Only owner can call this function.
     * @param newDedicatedCaller Address of the new dedicated caller.
     */
    function updateDedicatedCaller(address newDedicatedCaller) external;

    /**
     * @notice Updates the address of the price feed and its subsequent timeout.
     * NOTE: Only owner can call this function.
     * @param newPriceFeedTimeout Subsequent timeout for the new price feed.
     * @param newPriceFeed Address of the new price feed.
     */
    function updatePriceFeed(uint256 newPriceFeedTimeout, AggregatorV3Interface newPriceFeed) external;

    /**
     * @notice Updates the address of the underlying pool.
     * NOTE: Only owner can call this function.
     * @param newPool Address of the new underlying pool.
     */
    function updatePool(IUniswapV3Pool newPool) external;

    /**
     * @notice Adds, removes, or updates an entry in the list of cycle trackers.
     * @param setState Operation type (ADD, REMOVE, or UPDATE).
     * @param index Index of the cycle tracker entry (used for REMOVE, and UPDATE).
     * @param newCycleTracker Cycle tracker entry (used for ADD, and UPDATE).
     */
    function setCycleTracker(SetState setState, uint256 index, ICycleTracker newCycleTracker) external;

    /**
     * @notice Gets the price for snapshots.
     * @param twapInterval Time interval for the observed TWAP.
     * @return snapshotPrice Snapshot price from the underlying pool.
     */
    function getSnapshot(uint32 twapInterval) external view returns (uint256 snapshotPrice);
}

File 32 of 35 : ICycleTracker.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title ICycleTracker.
 * @author DOP Team.
 * @notice Minimized interface for tracking cycles.
 */
interface ICycleTracker {
    /* ========================== FUNCTIONS ========================== */

    /**
     * @notice Index of the next cycle.
     */
    function nextCycle() external view returns (uint256);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAccumulator } from "./IAccumulator.sol";
import { IERC20Burnable } from "./IERC20Burnable.sol";

import { SetState } from "../utils/Globals.sol";

/**
 * @title IDOP.
 * @author DOP Team.
 * @notice Interface for the data ownership protocol token.
 */
interface IDOP is IERC20Burnable {
    /* ========================== TYPES ========================== */

    /// @dev Represents an entry in the inflation table.
    struct Table {
        /// @custom:member Lower limit for the given range of fully diluted market cap.
        uint112 lowerLimit;
        /// @custom:member Upper limit for the given range of fully diluted market cap.
        uint112 upperLimit;
        /// @custom:member Inflation rate to apply.
        uint32 rate;
    }

    /* ========================== EVENTS ========================== */

    /// @dev Emitted when treasury is funded.
    event Fund(
        uint256 twapPrice,
        uint256 cycle,
        uint256 cycleStartBlockNumber,
        uint256 cycleEndBlockNumber,
        uint256 fullyDilutedMarketCap,
        uint256 amount
    );

    /// @dev Emitted when transfers are enabled.
    event TransfersEnabled();

    /// @dev Emitted when a table `newTable` is added to the inflation table.
    event AddInflationTable(Table newTable);

    /// @dev Emitted when the table at `index` is removed from the inflation table.
    event RemoveInflationTable(uint256 index);

    /// @dev Emitted when the table at `index` is changed to `newTable` from `oldTable`.
    event UpdateInflationTable(uint256 index, Table newTable, Table oldTable);

    /// @dev Emitted when DAO treasury is changed to `newTreasury` from `oldTreasury`.
    event UpdateTreasury(address indexed newTreasury, address indexed oldTreasury);

    /// @dev Emitted when `account` is added or removed from the initially allowed list.
    event AllowListUpdated(address indexed account, bool state);

    /* ========================== ERRORS ========================== */

    /// @dev Indicates a failure if there is an attempt to enable transfers more than once.
    error AlreadyEnabled();

    /// @dev Indicates a failure when adding to or updating the inflation table if the `newTable`'s lower limit is
    /// greater than or equal to the upper limit.
    error RangeMalformed();

    /// @dev Indicates a failure when adding to or updating the inflation table if the `newTable`'s range overlaps an
    /// existing table.
    error RangeOverlap();

    /// @dev Indicates a failure when transfers are not yet enabled.
    error TransferNotAllowed();

    /* ========================== FUNCTIONS ========================== */

    /**
     * @notice Index of the next cycle.
     */
    function nextCycle() external view returns (uint256);

    /**
     * @notice Block number at which the next cycle will start.
     */
    function nextCycleStartBlockNumber() external view returns (uint256);

    /**
     * @notice Address of the DAO treasury.
     */
    function treasury() external view returns (address);

    /**
     * @notice Address of the dedicated caller.
     */
    function dedicatedCaller() external view returns (address);

    /**
     * @notice Address of the price accumulator.
     */
    function accumulator() external view returns (IAccumulator);

    /**
     * @notice Flag indicating the current state of transferability.
     * NOTE: Initially false. Can only be toggled once.
     */
    function isTransferEnabled() external view returns (bool);

    /**
     * @notice Inflation thresholds and data.
     * @param index Index of the inflation table entry.
     */
    function inflationTable(uint256 index) external view returns (uint112 lowerLimit, uint112 upperLimit, uint32 rate);

    /**
     * @notice Returns whether the address is allowed to transfer tokens while transfers are disabled.
     * @param account The address to check.
     */
    function initiallyAllowed(address account) external view returns (bool);

    /**
     * @notice Performs funding subject to the fully diluted market cap.
     * NOTE: Only dedicated caller can call this function.
     */
    function fund() external;

    /**
     * @notice Enables transfer for all users.
     * NOTE: Only owner can call this function. Can only be called once.
     */
    function enableTransfer() external;

    /**
     * @notice Updates the address of the DAO treasury.
     * NOTE: Only owner can call this function.
     * @param newTreasury Address of the new DAO treasury.
     */
    function updateTreasury(address newTreasury) external;

    /**
     * @notice Updates the address of the dedicated caller.
     * NOTE: Only owner can call this function.
     * @param newDedicatedCaller Address of the new dedicated caller.
     */
    function updateDedicatedCaller(address newDedicatedCaller) external;

    /**
     * @notice Updates the address of the price accumulator.
     * NOTE: Only owner can call this function.
     * @param newAccumulator Address of the new price accumulator.
     */
    function updateAccumulator(IAccumulator newAccumulator) external;

    /**
     * @notice Adds, removes, or updates an entry in the inflation table.
     * @param setState Operation type (ADD, REMOVE, or UPDATE).
     * @param index Index of the table entry (used for REMOVE, and UPDATE).
     * @param newTable Table entry (used for ADD, and UPDATE).
     */
    function setInflationTable(SetState setState, uint256 index, Table memory newTable) external;

    /**
     * @notice Updates the initially allowed status of an address.
     * @param account Address to be added or removed from the initially allowed list.
     * @param state New status of the address.
     */
    function updateAccountState(address account, bool state) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title IERC20Burnable.
 * @author DOP Team.
 * @notice Interface for the IERC20Burnable contract.
 */
interface IERC20Burnable is IERC20 {
    /**
     * @dev Destroys `amount` tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 amount) external;

    /**
     * @dev Destroys `amount` tokens from `account`, deducting from the caller's
     * allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `amount`.
     */
    function burnFrom(address account, uint256 amount) external;
}

File 35 of 35 : Globals.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.29;

/* ========================== FREE VARIABLES ========================== */

/// @dev Number of blocks elapsed per cycle.
uint256 constant _BLOCKS_PER_CYCLE = 216_000;

/* ========================== TYPES ========================== */

/// @dev Represents operation type to be used when managing the inflation table.
enum SetState {
    ADD,
    REMOVE,
    UPDATE
}

/* ========================== EVENTS ========================== */

/// @dev Emitted when price accumulator is changed to `newAccumulator` from `oldAccumulator`.
event UpdateAccumulator(address indexed newAccumulator, address indexed oldAccumulator);

/// @dev Emitted when dedicated caller is changed to `newDedicatedCaller` from `oldDedicatedCaller`.
event UpdateDedicatedCaller(address indexed newDedicatedCaller, address indexed oldDedicatedCaller);

/* ========================== ERRORS ========================== */

/// @dev Indicates a failure if cycle desynchronization occurs.
error CycleDesync();

/// @dev Indicates a failure if no more cycles exist.
error CycleUnavailable();

/// @dev Indicates a failure when removing from or updating the inflation table if the index is out of bounds.
error IndexOutOfBounds();

/// @dev Indicates an error with the given argument address. For example, `address(0)`.
error InvalidAddress();

/// @dev Indicates an error with the given argument array's length. For example, `array.length() == 0`.
error InvalidArrayLength();

/// @dev Indicates an error with the given argument's assignment. For example, `argument == stateVariable`.
error InvalidAssignment();

/// @dev Indicates an error with the given argument value. For example, `0`.
error InvalidValue();

/// @dev Indicates a failure if the next cycle has not yet started.
error NextCycleNotStarted();

/// @dev The caller is not authorized to perform an operation.
error UnauthorizedAccount();

/* ========================== FREE FUNCTIONS ========================== */

/**
 * @dev For more efficient reverts.
 */
function _revert(bytes4 errorSelector) pure {
    assembly {
        mstore(0x00, errorSelector)
        revert(0x00, 0x04)
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "evmVersion": "cancun",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"initialOwner_","type":"address"},{"internalType":"uint256","name":"startBlockNumber_","type":"uint256"},{"internalType":"address","name":"treasury_","type":"address"},{"internalType":"address","name":"dedicatedCaller_","type":"address"},{"components":[{"internalType":"uint112","name":"lowerLimit","type":"uint112"},{"internalType":"uint112","name":"upperLimit","type":"uint112"},{"internalType":"uint32","name":"rate","type":"uint32"}],"internalType":"struct IDOP.Table[]","name":"inflationTable_","type":"tuple[]"},{"internalType":"address[]","name":"initiallyAllowed_","type":"address[]"},{"internalType":"uint256","name":"initialSupply_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyEnabled","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"RangeMalformed","type":"error"},{"inputs":[],"name":"RangeOverlap","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TransferNotAllowed","type":"error"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint112","name":"lowerLimit","type":"uint112"},{"internalType":"uint112","name":"upperLimit","type":"uint112"},{"internalType":"uint32","name":"rate","type":"uint32"}],"indexed":false,"internalType":"struct IDOP.Table","name":"newTable","type":"tuple"}],"name":"AddInflationTable","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"state","type":"bool"}],"name":"AllowListUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"twapPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"cycle","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"cycleStartBlockNumber","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"cycleEndBlockNumber","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fullyDilutedMarketCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Fund","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"}],"name":"RemoveInflationTable","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[],"name":"TransfersEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newAccumulator","type":"address"},{"indexed":true,"internalType":"address","name":"oldAccumulator","type":"address"}],"name":"UpdateAccumulator","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newDedicatedCaller","type":"address"},{"indexed":true,"internalType":"address","name":"oldDedicatedCaller","type":"address"}],"name":"UpdateDedicatedCaller","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"},{"components":[{"internalType":"uint112","name":"lowerLimit","type":"uint112"},{"internalType":"uint112","name":"upperLimit","type":"uint112"},{"internalType":"uint32","name":"rate","type":"uint32"}],"indexed":false,"internalType":"struct IDOP.Table","name":"newTable","type":"tuple"},{"components":[{"internalType":"uint112","name":"lowerLimit","type":"uint112"},{"internalType":"uint112","name":"upperLimit","type":"uint112"},{"internalType":"uint32","name":"rate","type":"uint32"}],"indexed":false,"internalType":"struct IDOP.Table","name":"oldTable","type":"tuple"}],"name":"UpdateInflationTable","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newTreasury","type":"address"},{"indexed":true,"internalType":"address","name":"oldTreasury","type":"address"}],"name":"UpdateTreasury","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulator","outputs":[{"internalType":"contract IAccumulator","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dedicatedCaller","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"inflationTable","outputs":[{"internalType":"uint112","name":"lowerLimit","type":"uint112"},{"internalType":"uint112","name":"upperLimit","type":"uint112"},{"internalType":"uint32","name":"rate","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"initiallyAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isTransferEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextCycleStartBlockNumber","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum SetState","name":"setState","type":"uint8"},{"internalType":"uint256","name":"index","type":"uint256"},{"components":[{"internalType":"uint112","name":"lowerLimit","type":"uint112"},{"internalType":"uint112","name":"upperLimit","type":"uint112"},{"internalType":"uint32","name":"rate","type":"uint32"}],"internalType":"struct IDOP.Table","name":"newTable","type":"tuple"}],"name":"setInflationTable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"state","type":"bool"}],"name":"updateAccountState","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IAccumulator","name":"newAccumulator","type":"address"}],"name":"updateAccumulator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newDedicatedCaller","type":"address"}],"name":"updateDedicatedCaller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTreasury","type":"address"}],"name":"updateTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"}]

610160604052348015610010575f5ffd5b50604051613c84380380613c8483398101604081905261002f91610ce6565b6040518060400160405280601781526020017f44617461204f776e6572736869702050726f746f636f6c00000000000000000081525080604051806040016040528060018152602001603160f81b8152506040518060400160405280601781526020017f44617461204f776e6572736869702050726f746f636f6c000000000000000000815250604051806040016040528060038152602001620444f560ec1b8152508b5f6001600160a01b0316816001600160a01b03160361010c57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b610115816102d1565b5060046101228382610ebd565b50600561012f8282610ebd565b5061013f91508390506006610320565b6101205261014e816007610320565b61014052815160208084019190912060e052815190820120610100524660a0526101da60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052508515806101ef575080155b1561020457610204632a9ffab760e21b610352565b600a8690556102128561035a565b61021b846103fa565b82515f5b81811015610259576102515f5f87848151811061023e5761023e610f77565b602002602001015161049a60201b60201c565b60010161021f565b5082515f5b818110156102985761029085828151811061027b5761027b610f77565b6020026020010151600161093060201b60201c565b60010161025e565b508115806102a4575080155b156102b9576102b9634ec4810560e11b610352565b6102c389846109b4565b5050505050505050506110e2565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f60208351101561033b57610334836109e8565b905061034c565b816103468482610ebd565b5060ff90505b92915050565b805f5260045ffd5b6001600160a01b0381166103785761037863e6c4247b60e01b610352565b600b546001600160a01b039081169082160361039e5761039e637fd217e360e01b610352565b600b546040516001600160a01b03918216918316907fd101a15f9e9364a1c0a7c4cc8eb4cd9220094e83353915b0c74e09f72ec73edb905f90a3600b80546001600160a01b0319166001600160a01b0392909216919091179055565b6001600160a01b0381166104185761041863e6c4247b60e01b610352565b600c546001600160a01b039081169082160361043e5761043e637fd217e360e01b610352565b600c546040516001600160a01b03918216918316907f5ef0f4e159a37989eadc60d2875cc0dfeac0fa77d67df7fce4cc67e0ae014634905f90a3600c80546001600160a01b0319166001600160a01b0392909216919091179055565b600e545f808560028111156104b1576104b1610f8b565b141590508080156104c25750818410155b156104d7576104d7634e23d03560e01b610352565b5f60018660028111156104ec576104ec610f8b565b14801591506106375783602001516001600160701b0316845f01516001600160701b031610610525576105256345c5366d60e11b610352565b5f5b83811015610635575f8088600281111561054357610543610f8b565b148061056b5750600288600281111561055e5761055e610f8b565b14801561056b5750868214155b90505f600e838154811061058157610581610f77565b5f9182526020918290206040805160608101825291909201546001600160701b038082168352600160701b8204169382019390935263ffffffff600160e01b909304929092169082015290508180156105f2575080602001516001600160701b0316875f01516001600160701b0316105b8015610616575086602001516001600160701b0316815f01516001600160701b0316105b1561062b5761062b63ee1aff0960e01b610352565b5050600101610527565b505b5f86600281111561064a5761064a610f8b565b0361071257600e80546001810182555f9190915284517fbb7b4a454dc3493923482f07822329ed19e8244eff582cc204f8554c3620c3fd909101805460208701516040808901516001600160701b039586166001600160e01b031990941693909317600160701b9590921694909402176001600160e01b0316600160e01b63ffffffff90921691909102179055517f6df81aacbe162cbbe15bd4854dd3e6f09d45944bd1f12dd27d4a38f1d536286290610705908690610f9f565b60405180910390a1610928565b600186600281111561072657610726610f8b565b03610847575f610737600185610fe8565b90508086146107e057600e818154811061075357610753610f77565b905f5260205f2001600e878154811061076e5761076e610f77565b5f91825260209091208254910180546001600160701b039283166001600160701b031982168117835584546001600160e01b031990921617600160701b91829004909316029190911780825591546001600160e01b03909216600160e01b9283900463ffffffff169092029190911790555b600e8054806107f1576107f1610ffb565b5f8281526020812082015f19908101919091550190556040517f24180d68268f8a11c31d4326ffb79e0cce743afe6737bef15a12c92b8cedfda1906108399088815260200190565b60405180910390a150610928565b600286600281111561085b5761085b610f8b565b03610928577f77b32144d5e1118335eb858489091621874fbf4d2def12949395b9580606f3958585600e888154811061089657610896610f77565b905f5260205f20016040516108ad9392919061100f565b60405180910390a183600e86815481106108c9576108c9610f77565b5f9182526020918290208351910180549284015160409094015163ffffffff16600160e01b026001600160e01b036001600160701b03958616600160701b026001600160e01b0319909516959093169490941792909217169190911790555b505050505050565b6001600160a01b0382165f908152600f602052604090205460ff161515811515146109b0576001600160a01b0382165f818152600f6020908152604091829020805460ff191685151590811790915591519182527f73121574a4eadb4cfdeb2ba56a6a88067b03edd1f0a0dfcac0a5a95682a24367910160405180910390a25b5050565b6001600160a01b0382166109dd5760405163ec442f0560e01b81525f6004820152602401610103565b6109b05f8383610a25565b5f5f829050601f81511115610a12578260405163305a27a960e01b81526004016101039190611077565b8051610a1d826110ac565b179392505050565b6001600160a01b03831615801590610a475750600d54600160a01b900460ff16155b8015610a6b57506001600160a01b0383165f908152600f602052604090205460ff16155b15610a8057610a80638cd22d1960e01b610352565b610a8b838383610a90565b505050565b6001600160a01b038316610aba578060035f828254610aaf91906110cf565b90915550610b2a9050565b6001600160a01b0383165f9081526001602052604090205481811015610b0c5760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610103565b6001600160a01b0384165f9081526001602052604090209082900390555b6001600160a01b038216610b4657600380548290039055610b64565b6001600160a01b0382165f9081526001602052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610ba991815260200190565b60405180910390a3505050565b80516001600160a01b0381168114610bcc575f5ffd5b919050565b634e487b7160e01b5f52604160045260245ffd5b604051606081016001600160401b0381118282101715610c0757610c07610bd1565b60405290565b604051601f8201601f191681016001600160401b0381118282101715610c3557610c35610bd1565b604052919050565b5f6001600160401b03821115610c5557610c55610bd1565b5060051b60200190565b80516001600160701b0381168114610bcc575f5ffd5b5f82601f830112610c84575f5ffd5b8151610c97610c9282610c3d565b610c0d565b8082825260208201915060208360051b860101925085831115610cb8575f5ffd5b602085015b83811015610cdc57610cce81610bb6565b835260209283019201610cbd565b5095945050505050565b5f5f5f5f5f5f5f60e0888a031215610cfc575f5ffd5b610d0588610bb6565b60208901519097509550610d1b60408901610bb6565b9450610d2960608901610bb6565b60808901519094506001600160401b03811115610d44575f5ffd5b8801601f81018a13610d54575f5ffd5b8051610d62610c9282610c3d565b8082825260208201915060206060840285010192508c831115610d83575f5ffd5b6020840193505b82841015610df4576060848e031215610da1575f5ffd5b610da9610be5565b610db285610c5f565b8152610dc060208601610c5f565b6020820152604085015163ffffffff81168114610ddb575f5ffd5b6040820152825260609390930192602090910190610d8a565b60a08c0151909650925050506001600160401b03811115610e13575f5ffd5b610e1f8a828b01610c75565b9250505f60c089015190508091505092959891949750929550565b600181811c90821680610e4e57607f821691505b602082108103610e6c57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610a8b57805f5260205f20601f840160051c81016020851015610e975750805b601f840160051c820191505b81811015610eb6575f8155600101610ea3565b5050505050565b81516001600160401b03811115610ed657610ed6610bd1565b610eea81610ee48454610e3a565b84610e72565b6020601f821160018114610f1c575f8315610f055750848201515b5f19600385901b1c1916600184901b178455610eb6565b5f84815260208120601f198516915b82811015610f4b5787850151825560209485019460019092019101610f2b565b5084821015610f6857868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52602160045260245ffd5b81516001600160701b0390811682526020808401519091169082015260408083015163ffffffff16908201526060810161034c565b634e487b7160e01b5f52601160045260245ffd5b8181038181111561034c5761034c610fd4565b634e487b7160e01b5f52603160045260245ffd5b83815260e0810161104b602083018580516001600160701b0390811683526020808301519091169083015260409081015163ffffffff16910152565b91546001600160701b038082166080840152607082901c1660a083015260e01c60c09091015292915050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b80516020808301519190811015610e6c575f1960209190910360031b1b16919050565b8082018082111561034c5761034c610fd4565b60805160a05160c05160e051610100516101205161014051612b516111335f395f611be201525f611bb501525f61133001525f61130801525f61126301525f61128d01525f6112b70152612b515ff3fe608060405234801561000f575f5ffd5b5060043610610201575f3560e01c806379cc679011610123578063a9059cbb116100b8578063cca5dcb611610088578063dd62ed3e1161006e578063dd62ed3e146104e7578063f1b50c1d1461052c578063f2fde38b14610534575f5ffd5b8063cca5dcb6146104af578063d505accf146104d4575f5ffd5b8063a9059cbb1461043b578063af1875531461044e578063b0da48c914610494578063b60d4288146104a7575f5ffd5b80638da5cb5b116100f35780638da5cb5b146103ed57806395d89b411461040a5780639d0ef17114610412578063a28a721214610432575f5ffd5b806379cc6790146103995780637ecebe00146103ac5780637f51bb1f146103bf57806384b0196e146103d2575f5ffd5b806342966c68116101995780636586b536116101695780636586b536146103405780636b6923b81461035357806370a082311461035c578063715018a614610391575f5ffd5b806342966c68146102d857806353ef25d4146102eb5780635f377e4b1461030d57806361d027b314610320575f5ffd5b806318160ddd116101d457806318160ddd1461029c57806323b872dd146102ae578063313ce567146102c15780633644e515146102d0575f5ffd5b8063033811541461020557806306fdde031461024f578063095ea7b31461026457806312ffec4214610287575b5f5ffd5b600d546102259073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b610257610547565b60405161024691906124e8565b610277610272366004612522565b6105d7565b6040519015158152602001610246565b61029a61029536600461254c565b6105f0565b005b6003545b604051908152602001610246565b6102776102bc366004612567565b610604565b60405160128152602001610246565b6102a0610627565b61029a6102e63660046125a5565b610635565b6102776102f936600461254c565b600f6020525f908152604090205460ff1681565b61029a61031b3660046125de565b61063e565b600b546102259073ffffffffffffffffffffffffffffffffffffffff1681565b61029a61034e36600461254c565b610656565b6102a060095481565b6102a061036a36600461254c565b73ffffffffffffffffffffffffffffffffffffffff165f9081526001602052604090205490565b61029a61077c565b61029a6103a7366004612522565b61078f565b6102a06103ba36600461254c565b61079d565b61029a6103cd36600461254c565b6107c7565b6103da6107d8565b60405161024697969594939291906126cb565b5f5473ffffffffffffffffffffffffffffffffffffffff16610225565b610257610836565b600c546102259073ffffffffffffffffffffffffffffffffffffffff1681565b6102a0600a5481565b610277610449366004612522565b610845565b61046161045c3660046125a5565b610852565b604080516dffffffffffffffffffffffffffff948516815293909216602084015263ffffffff1690820152606001610246565b61029a6104a236600461278a565b6108bd565b61029a6108cf565b600d546102779074010000000000000000000000000000000000000000900460ff1681565b61029a6104e23660046127c5565b610c8b565b6102a06104f5366004612836565b73ffffffffffffffffffffffffffffffffffffffff9182165f90815260026020908152604080832093909416825291909152205490565b61029a610e39565b61029a61054236600461254c565b610ef6565b60606004805461055690612862565b80601f016020809104026020016040519081016040528092919081815260200182805461058290612862565b80156105cd5780601f106105a4576101008083540402835291602001916105cd565b820191905f5260205f20905b8154815290600101906020018083116105b057829003601f168201915b5050505050905090565b5f336105e4818585610f56565b60019150505b92915050565b6105f8610f63565b61060181610fb5565b50565b5f336106118582856110d3565b61061c8585856111a1565b506001949350505050565b5f61063061124a565b905090565b61060181611380565b610646610f63565b61065183838361138a565b505050565b61065e610f63565b73ffffffffffffffffffffffffffffffffffffffff81166106a2576106a27fe6c4247b000000000000000000000000000000000000000000000000000000006119ff565b600d5473ffffffffffffffffffffffffffffffffffffffff908116908216036106ee576106ee7f7fd217e3000000000000000000000000000000000000000000000000000000006119ff565b600d5460405173ffffffffffffffffffffffffffffffffffffffff918216918316907fa6175d420f17457445d0f0e386f6ae5c5ddbf5d1a9d919a274c5474c4e4fdfee905f90a3600d80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b610784610f63565b61078d5f611a07565b565b6107998282611a7b565b5050565b73ffffffffffffffffffffffffffffffffffffffff81165f908152600860205260408120546105ea565b6107cf610f63565b61060181611a90565b5f6060805f5f5f60606107e9611bae565b6107f1611bdb565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b60606005805461055690612862565b5f336105e48185856111a1565b600e8181548110610861575f80fd5b5f918252602090912001546dffffffffffffffffffffffffffff80821692506e010000000000000000000000000000820416907c0100000000000000000000000000000000000000000000000000000000900463ffffffff1683565b6108c5610f63565b6107998282611c08565b600c5473ffffffffffffffffffffffffffffffffffffffff163314610917576109177fa97ff08a000000000000000000000000000000000000000000000000000000006119ff565b600980545f9182610927836128e0565b919050559050600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636b6923b86040518163ffffffff1660e01b8152600401602060405180830381865afa158015610997573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109bb9190612917565b81146109ea576109ea7f6f540f30000000000000000000000000000000000000000000000000000000006119ff565b600a54431015610a1d57610a1d7f55b00d59000000000000000000000000000000000000000000000000000000006119ff565b62034bc0600a5f828254610a31919061292e565b9091555050600d546040517f2fb79dff000000000000000000000000000000000000000000000000000000008152600481018390525f91829173ffffffffffffffffffffffffffffffffffffffff90911690632fb79dff906024016040805180830381865afa158015610aa6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610aca9190612941565b90925090505f610ada8284612963565b90505f6ec097ce7bc90715b34b9f1000000000610af660035490565b610b00908461299b565b610b0a9190612963565b600e549091505f805b82811015610c07575f600e8281548110610b2f57610b2f6129b2565b5f9182526020918290206040805160608101825292909101546dffffffffffffffffffffffffffff8082168085526e0100000000000000000000000000008304909116948401949094527c0100000000000000000000000000000000000000000000000000000000900463ffffffff169082015291508510801590610bc7575080602001516dffffffffffffffffffffffffffff1685105b15610bfe576064816040015163ffffffff16610be260035490565b610bec919061299b565b610bf69190612963565b925050610c07565b50600101610b13565b50600b54610c2b9073ffffffffffffffffffffffffffffffffffffffff1682611cc3565b600a5460408051868152602081018a9052438183015260608101929092526080820185905260a08201839052517fe7db0a98ac13990cf99608c583f48bd030e17adf96daa438c024ce7806f5b7df9181900360c00190a150505050505050565b83421115610ccd576040517f62791302000000000000000000000000000000000000000000000000000000008152600481018590526024015b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888610d258c73ffffffffffffffffffffffffffffffffffffffff165f90815260086020526040902080546001810190915590565b60408051602081019690965273ffffffffffffffffffffffffffffffffffffffff94851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f610d8c82611d1d565b90505f610d9b82878787611d64565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610e22576040517f4b800e4600000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff80831660048301528b166024820152604401610cc4565b610e2d8a8a8a610f56565b50505050505050505050565b610e41610f63565b600d5474010000000000000000000000000000000000000000900460ff1615610e8d57610e8d7ff2a5f75a000000000000000000000000000000000000000000000000000000006119ff565b600d80547fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff16740100000000000000000000000000000000000000001790556040517feadb24812ab3c9a55c774958184293ebdb6c7f6a2dbab11f397d80c86feb65d3905f90a1565b610efe610f63565b73ffffffffffffffffffffffffffffffffffffffff8116610f4d576040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b61060181611a07565b6106518383836001611d90565b5f5473ffffffffffffffffffffffffffffffffffffffff16331461078d576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff8116610ff957610ff97fe6c4247b000000000000000000000000000000000000000000000000000000006119ff565b600c5473ffffffffffffffffffffffffffffffffffffffff90811690821603611045576110457f7fd217e3000000000000000000000000000000000000000000000000000000006119ff565b600c5460405173ffffffffffffffffffffffffffffffffffffffff918216918316907f5ef0f4e159a37989eadc60d2875cc0dfeac0fa77d67df7fce4cc67e0ae014634905f90a3600c80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b73ffffffffffffffffffffffffffffffffffffffff8381165f908152600260209081526040808320938616835292905220547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81101561119b578181101561118d576040517ffb8f41b200000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff841660048201526024810182905260448101839052606401610cc4565b61119b84848484035f611d90565b50505050565b73ffffffffffffffffffffffffffffffffffffffff83166111f0576040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff821661123f576040517fec442f050000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b610651838383611ed5565b5f3073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000161480156112af57507f000000000000000000000000000000000000000000000000000000000000000046145b156112d957507f000000000000000000000000000000000000000000000000000000000000000090565b610630604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6106013382611f7f565b600e545f808560028111156113a1576113a16129df565b141590508080156113b25750818410155b156113e0576113e07f4e23d035000000000000000000000000000000000000000000000000000000006119ff565b5f60018660028111156113f5576113f56129df565b14801591506115c75783602001516dffffffffffffffffffffffffffff16845f01516dffffffffffffffffffffffffffff1610611455576114557f8b8a6cda000000000000000000000000000000000000000000000000000000006119ff565b5f5b838110156115c5575f80886002811115611473576114736129df565b148061149b5750600288600281111561148e5761148e6129df565b14801561149b5750868214155b90505f600e83815481106114b1576114b16129b2565b5f9182526020918290206040805160608101825291909201546dffffffffffffffffffffffffffff80821683526e0100000000000000000000000000008204169382019390935263ffffffff7c01000000000000000000000000000000000000000000000000000000009093049290921690820152905081801561155b575080602001516dffffffffffffffffffffffffffff16875f01516dffffffffffffffffffffffffffff16105b801561158d575086602001516dffffffffffffffffffffffffffff16815f01516dffffffffffffffffffffffffffff16105b156115bb576115bb7fee1aff09000000000000000000000000000000000000000000000000000000006119ff565b5050600101611457565b505b5f8660028111156115da576115da6129df565b036116fa57600e80546001810182555f9190915284517fbb7b4a454dc3493923482f07822329ed19e8244eff582cc204f8554c3620c3fd909101805460208701516040808901516dffffffffffffffffffffffffffff9586167fffffffff00000000000000000000000000000000000000000000000000000000909416939093176e0100000000000000000000000000009590921694909402177bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167c010000000000000000000000000000000000000000000000000000000063ffffffff90921691909102179055517f6df81aacbe162cbbe15bd4854dd3e6f09d45944bd1f12dd27d4a38f1d5362862906116ed908690612a0c565b60405180910390a16119f7565b600186600281111561170e5761170e6129df565b036118be575f61171f600185612a57565b905080861461183857600e818154811061173b5761173b6129b2565b905f5260205f2001600e8781548110611756576117566129b2565b5f91825260209091208254910180546dffffffffffffffffffffffffffff9283167fffffffffffffffffffffffffffffffffffff000000000000000000000000000082168117835584547fffffffff00000000000000000000000000000000000000000000000000000000909216176e01000000000000000000000000000091829004909316029190911780825591547bffffffffffffffffffffffffffffffffffffffffffffffffffffffff9092167c01000000000000000000000000000000000000000000000000000000009283900463ffffffff169092029190911790555b600e80548061184957611849612a6a565b5f8281526020812082017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff908101919091550190556040517f24180d68268f8a11c31d4326ffb79e0cce743afe6737bef15a12c92b8cedfda1906118b09088815260200190565b60405180910390a1506119f7565b60028660028111156118d2576118d26129df565b036119f7577f77b32144d5e1118335eb858489091621874fbf4d2def12949395b9580606f3958585600e888154811061190d5761190d6129b2565b905f5260205f200160405161192493929190612a97565b60405180910390a183600e8681548110611940576119406129b2565b5f9182526020918290208351910180549284015160409094015163ffffffff167c0100000000000000000000000000000000000000000000000000000000027bffffffffffffffffffffffffffffffffffffffffffffffffffffffff6dffffffffffffffffffffffffffff9586166e010000000000000000000000000000027fffffffff00000000000000000000000000000000000000000000000000000000909516959093169490941792909217169190911790555b505050505050565b805f5260045ffd5b5f805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b611a868233836110d3565b6107998282611f7f565b73ffffffffffffffffffffffffffffffffffffffff8116611ad457611ad47fe6c4247b000000000000000000000000000000000000000000000000000000006119ff565b600b5473ffffffffffffffffffffffffffffffffffffffff90811690821603611b2057611b207f7fd217e3000000000000000000000000000000000000000000000000000000006119ff565b600b5460405173ffffffffffffffffffffffffffffffffffffffff918216918316907fd101a15f9e9364a1c0a7c4cc8eb4cd9220094e83353915b0c74e09f72ec73edb905f90a3600b80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b60606106307f00000000000000000000000000000000000000000000000000000000000000006006611fd9565b60606106307f00000000000000000000000000000000000000000000000000000000000000006007611fd9565b73ffffffffffffffffffffffffffffffffffffffff82165f908152600f602052604090205460ff161515811515146107995773ffffffffffffffffffffffffffffffffffffffff82165f818152600f602090815260409182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001685151590811790915591519182527f73121574a4eadb4cfdeb2ba56a6a88067b03edd1f0a0dfcac0a5a95682a24367910160405180910390a25050565b73ffffffffffffffffffffffffffffffffffffffff8216611d12576040517fec442f050000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b6107995f8383611ed5565b5f6105ea611d2961124a565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f5f5f5f611d7488888888612082565b925092509250611d848282612175565b50909695505050505050565b73ffffffffffffffffffffffffffffffffffffffff8416611ddf576040517fe602df050000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff8316611e2e576040517f94280d620000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff8085165f908152600260209081526040808320938716835292905220829055801561119b578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611ec791815260200190565b60405180910390a350505050565b73ffffffffffffffffffffffffffffffffffffffff831615801590611f155750600d5474010000000000000000000000000000000000000000900460ff16155b8015611f46575073ffffffffffffffffffffffffffffffffffffffff83165f908152600f602052604090205460ff16155b15611f7457611f747f8cd22d19000000000000000000000000000000000000000000000000000000006119ff565b610651838383612278565b73ffffffffffffffffffffffffffffffffffffffff8216611fce576040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b610799825f83611ed5565b606060ff8314611ff357611fec8361241f565b90506105ea565b818054611fff90612862565b80601f016020809104026020016040519081016040528092919081815260200182805461202b90612862565b80156120765780601f1061204d57610100808354040283529160200191612076565b820191905f5260205f20905b81548152906001019060200180831161205957829003601f168201915b505050505090506105ea565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156120bb57505f9150600390508261216b565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa15801561210c573d5f5f3e3d5ffd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff811661216257505f92506001915082905061216b565b92505f91508190505b9450945094915050565b5f826003811115612188576121886129df565b03612191575050565b60018260038111156121a5576121a56129df565b036121dc576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028260038111156121f0576121f06129df565b0361222a576040517ffce698f700000000000000000000000000000000000000000000000000000000815260048101829052602401610cc4565b600382600381111561223e5761223e6129df565b03610799576040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260048101829052602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff83166122af578060035f8282546122a4919061292e565b9091555061235f9050565b73ffffffffffffffffffffffffffffffffffffffff83165f9081526001602052604090205481811015612334576040517fe450d38c00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024810182905260448101839052606401610cc4565b73ffffffffffffffffffffffffffffffffffffffff84165f9081526001602052604090209082900390555b73ffffffffffffffffffffffffffffffffffffffff8216612388576003805482900390556123b3565b73ffffffffffffffffffffffffffffffffffffffff82165f9081526001602052604090208054820190555b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161241291815260200190565b60405180910390a3505050565b60605f61242b8361245c565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156105ea576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f81518084528060208401602086015e5f6020828601015260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011685010191505092915050565b602081525f6124fa602083018461249c565b9392505050565b73ffffffffffffffffffffffffffffffffffffffff81168114610601575f5ffd5b5f5f60408385031215612533575f5ffd5b823561253e81612501565b946020939093013593505050565b5f6020828403121561255c575f5ffd5b81356124fa81612501565b5f5f5f60608486031215612579575f5ffd5b833561258481612501565b9250602084013561259481612501565b929592945050506040919091013590565b5f602082840312156125b5575f5ffd5b5035919050565b80356dffffffffffffffffffffffffffff811681146125d9575f5ffd5b919050565b5f5f5f83850360a08112156125f1575f5ffd5b8435600381106125ff575f5ffd5b93506020850135925060607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc082011215612637575f5ffd5b506040516060810181811067ffffffffffffffff82111715612680577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b8060405250612691604086016125bc565b815261269f606086016125bc565b6020820152608085013563ffffffff811681146126ba575f5ffd5b604082015292959194509192509050565b7fff000000000000000000000000000000000000000000000000000000000000008816815260e060208201525f61270560e083018961249c565b8281036040840152612717818961249c565b6060840188905273ffffffffffffffffffffffffffffffffffffffff8716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b8181101561277957835183526020938401939092019160010161275b565b50909b9a5050505050505050505050565b5f5f6040838503121561279b575f5ffd5b82356127a681612501565b9150602083013580151581146127ba575f5ffd5b809150509250929050565b5f5f5f5f5f5f5f60e0888a0312156127db575f5ffd5b87356127e681612501565b965060208801356127f681612501565b95506040880135945060608801359350608088013560ff81168114612819575f5ffd5b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215612847575f5ffd5b823561285281612501565b915060208301356127ba81612501565b600181811c9082168061287657607f821691505b6020821081036128ad577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203612910576129106128b3565b5060010190565b5f60208284031215612927575f5ffd5b5051919050565b808201808211156105ea576105ea6128b3565b5f5f60408385031215612952575f5ffd5b505080516020909101519092909150565b5f82612996577f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b500490565b80820281158282048414176105ea576105ea6128b3565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b606081016105ea82846dffffffffffffffffffffffffffff81511682526dffffffffffffffffffffffffffff602082015116602083015263ffffffff60408201511660408301525050565b818103818111156105ea576105ea6128b3565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603160045260245ffd5b83815260e08101612ae860208301856dffffffffffffffffffffffffffff81511682526dffffffffffffffffffffffffffff602082015116602083015263ffffffff60408201511660408301525050565b91546dffffffffffffffffffffffffffff8082166080840152607082901c1660a083015260e01c60c0909101529291505056fea26469706673582212201658db81b5509fcd32cb4823aa69c0ffc4be5d4d45319935f5e31bdb0639c10564736f6c634300081d003300000000000000000000000055d1f38c4d2810affbf23ae62473138ea1a5aa8f0000000000000000000000000000000000000000000000000000000001663204000000000000000000000000e2b5355a359b5ae8bbe74dd222ccca445b5dbca70000000000000000000000007d19cd8e89c245645b9463fe904465d88a34248c00000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000000000000000000002e0000000000000000000000000000000000000000045f0b5f0b82058d1b7900000000000000000000000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002faf08000000000000000000000000000000000000000000000000000000000000000050000000000000000000000000000000000000000000000000000000002faf0800000000000000000000000000000000000000000000000000000000005f5e10000000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000005f5e100000000000000000000000000000000000000000000000000000000000ee6b2800000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000ee6b280000000000000000000000000000000000000000000000000000000001dcd65000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000001dcd6500000000000000000000000000000000000000ffffffffffffffffffffffffffff0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000100000000000000000000000055d1f38c4d2810affbf23ae62473138ea1a5aa8f

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610201575f3560e01c806379cc679011610123578063a9059cbb116100b8578063cca5dcb611610088578063dd62ed3e1161006e578063dd62ed3e146104e7578063f1b50c1d1461052c578063f2fde38b14610534575f5ffd5b8063cca5dcb6146104af578063d505accf146104d4575f5ffd5b8063a9059cbb1461043b578063af1875531461044e578063b0da48c914610494578063b60d4288146104a7575f5ffd5b80638da5cb5b116100f35780638da5cb5b146103ed57806395d89b411461040a5780639d0ef17114610412578063a28a721214610432575f5ffd5b806379cc6790146103995780637ecebe00146103ac5780637f51bb1f146103bf57806384b0196e146103d2575f5ffd5b806342966c68116101995780636586b536116101695780636586b536146103405780636b6923b81461035357806370a082311461035c578063715018a614610391575f5ffd5b806342966c68146102d857806353ef25d4146102eb5780635f377e4b1461030d57806361d027b314610320575f5ffd5b806318160ddd116101d457806318160ddd1461029c57806323b872dd146102ae578063313ce567146102c15780633644e515146102d0575f5ffd5b8063033811541461020557806306fdde031461024f578063095ea7b31461026457806312ffec4214610287575b5f5ffd5b600d546102259073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b610257610547565b60405161024691906124e8565b610277610272366004612522565b6105d7565b6040519015158152602001610246565b61029a61029536600461254c565b6105f0565b005b6003545b604051908152602001610246565b6102776102bc366004612567565b610604565b60405160128152602001610246565b6102a0610627565b61029a6102e63660046125a5565b610635565b6102776102f936600461254c565b600f6020525f908152604090205460ff1681565b61029a61031b3660046125de565b61063e565b600b546102259073ffffffffffffffffffffffffffffffffffffffff1681565b61029a61034e36600461254c565b610656565b6102a060095481565b6102a061036a36600461254c565b73ffffffffffffffffffffffffffffffffffffffff165f9081526001602052604090205490565b61029a61077c565b61029a6103a7366004612522565b61078f565b6102a06103ba36600461254c565b61079d565b61029a6103cd36600461254c565b6107c7565b6103da6107d8565b60405161024697969594939291906126cb565b5f5473ffffffffffffffffffffffffffffffffffffffff16610225565b610257610836565b600c546102259073ffffffffffffffffffffffffffffffffffffffff1681565b6102a0600a5481565b610277610449366004612522565b610845565b61046161045c3660046125a5565b610852565b604080516dffffffffffffffffffffffffffff948516815293909216602084015263ffffffff1690820152606001610246565b61029a6104a236600461278a565b6108bd565b61029a6108cf565b600d546102779074010000000000000000000000000000000000000000900460ff1681565b61029a6104e23660046127c5565b610c8b565b6102a06104f5366004612836565b73ffffffffffffffffffffffffffffffffffffffff9182165f90815260026020908152604080832093909416825291909152205490565b61029a610e39565b61029a61054236600461254c565b610ef6565b60606004805461055690612862565b80601f016020809104026020016040519081016040528092919081815260200182805461058290612862565b80156105cd5780601f106105a4576101008083540402835291602001916105cd565b820191905f5260205f20905b8154815290600101906020018083116105b057829003601f168201915b5050505050905090565b5f336105e4818585610f56565b60019150505b92915050565b6105f8610f63565b61060181610fb5565b50565b5f336106118582856110d3565b61061c8585856111a1565b506001949350505050565b5f61063061124a565b905090565b61060181611380565b610646610f63565b61065183838361138a565b505050565b61065e610f63565b73ffffffffffffffffffffffffffffffffffffffff81166106a2576106a27fe6c4247b000000000000000000000000000000000000000000000000000000006119ff565b600d5473ffffffffffffffffffffffffffffffffffffffff908116908216036106ee576106ee7f7fd217e3000000000000000000000000000000000000000000000000000000006119ff565b600d5460405173ffffffffffffffffffffffffffffffffffffffff918216918316907fa6175d420f17457445d0f0e386f6ae5c5ddbf5d1a9d919a274c5474c4e4fdfee905f90a3600d80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b610784610f63565b61078d5f611a07565b565b6107998282611a7b565b5050565b73ffffffffffffffffffffffffffffffffffffffff81165f908152600860205260408120546105ea565b6107cf610f63565b61060181611a90565b5f6060805f5f5f60606107e9611bae565b6107f1611bdb565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b60606005805461055690612862565b5f336105e48185856111a1565b600e8181548110610861575f80fd5b5f918252602090912001546dffffffffffffffffffffffffffff80821692506e010000000000000000000000000000820416907c0100000000000000000000000000000000000000000000000000000000900463ffffffff1683565b6108c5610f63565b6107998282611c08565b600c5473ffffffffffffffffffffffffffffffffffffffff163314610917576109177fa97ff08a000000000000000000000000000000000000000000000000000000006119ff565b600980545f9182610927836128e0565b919050559050600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636b6923b86040518163ffffffff1660e01b8152600401602060405180830381865afa158015610997573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109bb9190612917565b81146109ea576109ea7f6f540f30000000000000000000000000000000000000000000000000000000006119ff565b600a54431015610a1d57610a1d7f55b00d59000000000000000000000000000000000000000000000000000000006119ff565b62034bc0600a5f828254610a31919061292e565b9091555050600d546040517f2fb79dff000000000000000000000000000000000000000000000000000000008152600481018390525f91829173ffffffffffffffffffffffffffffffffffffffff90911690632fb79dff906024016040805180830381865afa158015610aa6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610aca9190612941565b90925090505f610ada8284612963565b90505f6ec097ce7bc90715b34b9f1000000000610af660035490565b610b00908461299b565b610b0a9190612963565b600e549091505f805b82811015610c07575f600e8281548110610b2f57610b2f6129b2565b5f9182526020918290206040805160608101825292909101546dffffffffffffffffffffffffffff8082168085526e0100000000000000000000000000008304909116948401949094527c0100000000000000000000000000000000000000000000000000000000900463ffffffff169082015291508510801590610bc7575080602001516dffffffffffffffffffffffffffff1685105b15610bfe576064816040015163ffffffff16610be260035490565b610bec919061299b565b610bf69190612963565b925050610c07565b50600101610b13565b50600b54610c2b9073ffffffffffffffffffffffffffffffffffffffff1682611cc3565b600a5460408051868152602081018a9052438183015260608101929092526080820185905260a08201839052517fe7db0a98ac13990cf99608c583f48bd030e17adf96daa438c024ce7806f5b7df9181900360c00190a150505050505050565b83421115610ccd576040517f62791302000000000000000000000000000000000000000000000000000000008152600481018590526024015b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888610d258c73ffffffffffffffffffffffffffffffffffffffff165f90815260086020526040902080546001810190915590565b60408051602081019690965273ffffffffffffffffffffffffffffffffffffffff94851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f610d8c82611d1d565b90505f610d9b82878787611d64565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610e22576040517f4b800e4600000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff80831660048301528b166024820152604401610cc4565b610e2d8a8a8a610f56565b50505050505050505050565b610e41610f63565b600d5474010000000000000000000000000000000000000000900460ff1615610e8d57610e8d7ff2a5f75a000000000000000000000000000000000000000000000000000000006119ff565b600d80547fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff16740100000000000000000000000000000000000000001790556040517feadb24812ab3c9a55c774958184293ebdb6c7f6a2dbab11f397d80c86feb65d3905f90a1565b610efe610f63565b73ffffffffffffffffffffffffffffffffffffffff8116610f4d576040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b61060181611a07565b6106518383836001611d90565b5f5473ffffffffffffffffffffffffffffffffffffffff16331461078d576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff8116610ff957610ff97fe6c4247b000000000000000000000000000000000000000000000000000000006119ff565b600c5473ffffffffffffffffffffffffffffffffffffffff90811690821603611045576110457f7fd217e3000000000000000000000000000000000000000000000000000000006119ff565b600c5460405173ffffffffffffffffffffffffffffffffffffffff918216918316907f5ef0f4e159a37989eadc60d2875cc0dfeac0fa77d67df7fce4cc67e0ae014634905f90a3600c80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b73ffffffffffffffffffffffffffffffffffffffff8381165f908152600260209081526040808320938616835292905220547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81101561119b578181101561118d576040517ffb8f41b200000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff841660048201526024810182905260448101839052606401610cc4565b61119b84848484035f611d90565b50505050565b73ffffffffffffffffffffffffffffffffffffffff83166111f0576040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff821661123f576040517fec442f050000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b610651838383611ed5565b5f3073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000a37db5456b5938aa50b33575ae2eb8048ca5959b161480156112af57507f000000000000000000000000000000000000000000000000000000000000000146145b156112d957507f9688630ad14717796524cb850ae5674c4678fe2303b6f11dc6dc04bb9ec4d46290565b610630604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fa42c0c045dd034e77a5fb2d505eaf58fe1a4d32ca623ec82477faa47844b37d2918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6106013382611f7f565b600e545f808560028111156113a1576113a16129df565b141590508080156113b25750818410155b156113e0576113e07f4e23d035000000000000000000000000000000000000000000000000000000006119ff565b5f60018660028111156113f5576113f56129df565b14801591506115c75783602001516dffffffffffffffffffffffffffff16845f01516dffffffffffffffffffffffffffff1610611455576114557f8b8a6cda000000000000000000000000000000000000000000000000000000006119ff565b5f5b838110156115c5575f80886002811115611473576114736129df565b148061149b5750600288600281111561148e5761148e6129df565b14801561149b5750868214155b90505f600e83815481106114b1576114b16129b2565b5f9182526020918290206040805160608101825291909201546dffffffffffffffffffffffffffff80821683526e0100000000000000000000000000008204169382019390935263ffffffff7c01000000000000000000000000000000000000000000000000000000009093049290921690820152905081801561155b575080602001516dffffffffffffffffffffffffffff16875f01516dffffffffffffffffffffffffffff16105b801561158d575086602001516dffffffffffffffffffffffffffff16815f01516dffffffffffffffffffffffffffff16105b156115bb576115bb7fee1aff09000000000000000000000000000000000000000000000000000000006119ff565b5050600101611457565b505b5f8660028111156115da576115da6129df565b036116fa57600e80546001810182555f9190915284517fbb7b4a454dc3493923482f07822329ed19e8244eff582cc204f8554c3620c3fd909101805460208701516040808901516dffffffffffffffffffffffffffff9586167fffffffff00000000000000000000000000000000000000000000000000000000909416939093176e0100000000000000000000000000009590921694909402177bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167c010000000000000000000000000000000000000000000000000000000063ffffffff90921691909102179055517f6df81aacbe162cbbe15bd4854dd3e6f09d45944bd1f12dd27d4a38f1d5362862906116ed908690612a0c565b60405180910390a16119f7565b600186600281111561170e5761170e6129df565b036118be575f61171f600185612a57565b905080861461183857600e818154811061173b5761173b6129b2565b905f5260205f2001600e8781548110611756576117566129b2565b5f91825260209091208254910180546dffffffffffffffffffffffffffff9283167fffffffffffffffffffffffffffffffffffff000000000000000000000000000082168117835584547fffffffff00000000000000000000000000000000000000000000000000000000909216176e01000000000000000000000000000091829004909316029190911780825591547bffffffffffffffffffffffffffffffffffffffffffffffffffffffff9092167c01000000000000000000000000000000000000000000000000000000009283900463ffffffff169092029190911790555b600e80548061184957611849612a6a565b5f8281526020812082017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff908101919091550190556040517f24180d68268f8a11c31d4326ffb79e0cce743afe6737bef15a12c92b8cedfda1906118b09088815260200190565b60405180910390a1506119f7565b60028660028111156118d2576118d26129df565b036119f7577f77b32144d5e1118335eb858489091621874fbf4d2def12949395b9580606f3958585600e888154811061190d5761190d6129b2565b905f5260205f200160405161192493929190612a97565b60405180910390a183600e8681548110611940576119406129b2565b5f9182526020918290208351910180549284015160409094015163ffffffff167c0100000000000000000000000000000000000000000000000000000000027bffffffffffffffffffffffffffffffffffffffffffffffffffffffff6dffffffffffffffffffffffffffff9586166e010000000000000000000000000000027fffffffff00000000000000000000000000000000000000000000000000000000909516959093169490941792909217169190911790555b505050505050565b805f5260045ffd5b5f805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b611a868233836110d3565b6107998282611f7f565b73ffffffffffffffffffffffffffffffffffffffff8116611ad457611ad47fe6c4247b000000000000000000000000000000000000000000000000000000006119ff565b600b5473ffffffffffffffffffffffffffffffffffffffff90811690821603611b2057611b207f7fd217e3000000000000000000000000000000000000000000000000000000006119ff565b600b5460405173ffffffffffffffffffffffffffffffffffffffff918216918316907fd101a15f9e9364a1c0a7c4cc8eb4cd9220094e83353915b0c74e09f72ec73edb905f90a3600b80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b60606106307f44617461204f776e6572736869702050726f746f636f6c0000000000000000176006611fd9565b60606106307f31000000000000000000000000000000000000000000000000000000000000016007611fd9565b73ffffffffffffffffffffffffffffffffffffffff82165f908152600f602052604090205460ff161515811515146107995773ffffffffffffffffffffffffffffffffffffffff82165f818152600f602090815260409182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001685151590811790915591519182527f73121574a4eadb4cfdeb2ba56a6a88067b03edd1f0a0dfcac0a5a95682a24367910160405180910390a25050565b73ffffffffffffffffffffffffffffffffffffffff8216611d12576040517fec442f050000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b6107995f8383611ed5565b5f6105ea611d2961124a565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f5f5f5f611d7488888888612082565b925092509250611d848282612175565b50909695505050505050565b73ffffffffffffffffffffffffffffffffffffffff8416611ddf576040517fe602df050000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff8316611e2e576040517f94280d620000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff8085165f908152600260209081526040808320938716835292905220829055801561119b578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611ec791815260200190565b60405180910390a350505050565b73ffffffffffffffffffffffffffffffffffffffff831615801590611f155750600d5474010000000000000000000000000000000000000000900460ff16155b8015611f46575073ffffffffffffffffffffffffffffffffffffffff83165f908152600f602052604090205460ff16155b15611f7457611f747f8cd22d19000000000000000000000000000000000000000000000000000000006119ff565b610651838383612278565b73ffffffffffffffffffffffffffffffffffffffff8216611fce576040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081525f6004820152602401610cc4565b610799825f83611ed5565b606060ff8314611ff357611fec8361241f565b90506105ea565b818054611fff90612862565b80601f016020809104026020016040519081016040528092919081815260200182805461202b90612862565b80156120765780601f1061204d57610100808354040283529160200191612076565b820191905f5260205f20905b81548152906001019060200180831161205957829003601f168201915b505050505090506105ea565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156120bb57505f9150600390508261216b565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa15801561210c573d5f5f3e3d5ffd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff811661216257505f92506001915082905061216b565b92505f91508190505b9450945094915050565b5f826003811115612188576121886129df565b03612191575050565b60018260038111156121a5576121a56129df565b036121dc576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028260038111156121f0576121f06129df565b0361222a576040517ffce698f700000000000000000000000000000000000000000000000000000000815260048101829052602401610cc4565b600382600381111561223e5761223e6129df565b03610799576040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260048101829052602401610cc4565b73ffffffffffffffffffffffffffffffffffffffff83166122af578060035f8282546122a4919061292e565b9091555061235f9050565b73ffffffffffffffffffffffffffffffffffffffff83165f9081526001602052604090205481811015612334576040517fe450d38c00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024810182905260448101839052606401610cc4565b73ffffffffffffffffffffffffffffffffffffffff84165f9081526001602052604090209082900390555b73ffffffffffffffffffffffffffffffffffffffff8216612388576003805482900390556123b3565b73ffffffffffffffffffffffffffffffffffffffff82165f9081526001602052604090208054820190555b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161241291815260200190565b60405180910390a3505050565b60605f61242b8361245c565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156105ea576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f81518084528060208401602086015e5f6020828601015260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011685010191505092915050565b602081525f6124fa602083018461249c565b9392505050565b73ffffffffffffffffffffffffffffffffffffffff81168114610601575f5ffd5b5f5f60408385031215612533575f5ffd5b823561253e81612501565b946020939093013593505050565b5f6020828403121561255c575f5ffd5b81356124fa81612501565b5f5f5f60608486031215612579575f5ffd5b833561258481612501565b9250602084013561259481612501565b929592945050506040919091013590565b5f602082840312156125b5575f5ffd5b5035919050565b80356dffffffffffffffffffffffffffff811681146125d9575f5ffd5b919050565b5f5f5f83850360a08112156125f1575f5ffd5b8435600381106125ff575f5ffd5b93506020850135925060607fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc082011215612637575f5ffd5b506040516060810181811067ffffffffffffffff82111715612680577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b8060405250612691604086016125bc565b815261269f606086016125bc565b6020820152608085013563ffffffff811681146126ba575f5ffd5b604082015292959194509192509050565b7fff000000000000000000000000000000000000000000000000000000000000008816815260e060208201525f61270560e083018961249c565b8281036040840152612717818961249c565b6060840188905273ffffffffffffffffffffffffffffffffffffffff8716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b8181101561277957835183526020938401939092019160010161275b565b50909b9a5050505050505050505050565b5f5f6040838503121561279b575f5ffd5b82356127a681612501565b9150602083013580151581146127ba575f5ffd5b809150509250929050565b5f5f5f5f5f5f5f60e0888a0312156127db575f5ffd5b87356127e681612501565b965060208801356127f681612501565b95506040880135945060608801359350608088013560ff81168114612819575f5ffd5b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215612847575f5ffd5b823561285281612501565b915060208301356127ba81612501565b600181811c9082168061287657607f821691505b6020821081036128ad577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203612910576129106128b3565b5060010190565b5f60208284031215612927575f5ffd5b5051919050565b808201808211156105ea576105ea6128b3565b5f5f60408385031215612952575f5ffd5b505080516020909101519092909150565b5f82612996577f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b500490565b80820281158282048414176105ea576105ea6128b3565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b606081016105ea82846dffffffffffffffffffffffffffff81511682526dffffffffffffffffffffffffffff602082015116602083015263ffffffff60408201511660408301525050565b818103818111156105ea576105ea6128b3565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603160045260245ffd5b83815260e08101612ae860208301856dffffffffffffffffffffffffffff81511682526dffffffffffffffffffffffffffff602082015116602083015263ffffffff60408201511660408301525050565b91546dffffffffffffffffffffffffffff8082166080840152607082901c1660a083015260e01c60c0909101529291505056fea26469706673582212201658db81b5509fcd32cb4823aa69c0ffc4be5d4d45319935f5e31bdb0639c10564736f6c634300081d0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000055d1f38c4d2810affbf23ae62473138ea1a5aa8f0000000000000000000000000000000000000000000000000000000001663204000000000000000000000000e2b5355a359b5ae8bbe74dd222ccca445b5dbca70000000000000000000000007d19cd8e89c245645b9463fe904465d88a34248c00000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000000000000000000002e0000000000000000000000000000000000000000045f0b5f0b82058d1b7900000000000000000000000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002faf08000000000000000000000000000000000000000000000000000000000000000050000000000000000000000000000000000000000000000000000000002faf0800000000000000000000000000000000000000000000000000000000005f5e10000000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000005f5e100000000000000000000000000000000000000000000000000000000000ee6b2800000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000ee6b280000000000000000000000000000000000000000000000000000000001dcd65000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000001dcd6500000000000000000000000000000000000000ffffffffffffffffffffffffffff0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000100000000000000000000000055d1f38c4d2810affbf23ae62473138ea1a5aa8f

-----Decoded View---------------
Arg [0] : initialOwner_ (address): 0x55d1F38C4D2810affBf23Ae62473138Ea1a5aa8f
Arg [1] : startBlockNumber_ (uint256): 23474692
Arg [2] : treasury_ (address): 0xe2b5355a359B5aE8bbe74DD222ccCa445B5DBcA7
Arg [3] : dedicatedCaller_ (address): 0x7D19cD8e89c245645b9463FE904465d88a34248c
Arg [4] : inflationTable_ (tuple[]):
Arg [1] : lowerLimit (uint112): 0
Arg [2] : upperLimit (uint112): 50000000
Arg [3] : rate (uint32): 5

Arg [1] : lowerLimit (uint112): 50000000
Arg [2] : upperLimit (uint112): 100000000
Arg [3] : rate (uint32): 4

Arg [1] : lowerLimit (uint112): 100000000
Arg [2] : upperLimit (uint112): 250000000
Arg [3] : rate (uint32): 3

Arg [1] : lowerLimit (uint112): 250000000
Arg [2] : upperLimit (uint112): 500000000
Arg [3] : rate (uint32): 2

Arg [1] : lowerLimit (uint112): 500000000
Arg [2] : upperLimit (uint112): 5192296858534827628530496329220095
Arg [3] : rate (uint32): 1

Arg [5] : initiallyAllowed_ (address[]): 0x55d1F38C4D2810affBf23Ae62473138Ea1a5aa8f
Arg [6] : initialSupply_ (uint256): 21645467063200000000000000000

-----Encoded View---------------
25 Constructor Arguments found :
Arg [0] : 00000000000000000000000055d1f38c4d2810affbf23ae62473138ea1a5aa8f
Arg [1] : 0000000000000000000000000000000000000000000000000000000001663204
Arg [2] : 000000000000000000000000e2b5355a359b5ae8bbe74dd222ccca445b5dbca7
Arg [3] : 0000000000000000000000007d19cd8e89c245645b9463fe904465d88a34248c
Arg [4] : 00000000000000000000000000000000000000000000000000000000000000e0
Arg [5] : 00000000000000000000000000000000000000000000000000000000000002e0
Arg [6] : 000000000000000000000000000000000000000045f0b5f0b82058d1b7900000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [9] : 0000000000000000000000000000000000000000000000000000000002faf080
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [11] : 0000000000000000000000000000000000000000000000000000000002faf080
Arg [12] : 0000000000000000000000000000000000000000000000000000000005f5e100
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [14] : 0000000000000000000000000000000000000000000000000000000005f5e100
Arg [15] : 000000000000000000000000000000000000000000000000000000000ee6b280
Arg [16] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [17] : 000000000000000000000000000000000000000000000000000000000ee6b280
Arg [18] : 000000000000000000000000000000000000000000000000000000001dcd6500
Arg [19] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [20] : 000000000000000000000000000000000000000000000000000000001dcd6500
Arg [21] : 000000000000000000000000000000000000ffffffffffffffffffffffffffff
Arg [22] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [23] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [24] : 00000000000000000000000055d1f38c4d2810affbf23ae62473138ea1a5aa8f


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.