ERC-20
Overview
Max Total Supply
5,192,296,858,534,827.628530496329220095 ERC20 ***
Holders
6
Total Transfers
-
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
AaveLinearPool
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../interfaces/IStaticAToken.sol"; import "../LinearPool.sol"; contract AaveLinearPool is LinearPool { ILendingPool private immutable _lendingPool; constructor( IVault vault, string memory name, string memory symbol, IERC20 mainToken, IERC20 wrappedToken, uint256 upperTarget, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) LinearPool( vault, name, symbol, mainToken, wrappedToken, upperTarget, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { _lendingPool = IStaticAToken(address(wrappedToken)).LENDING_POOL(); _require(address(mainToken) == IStaticAToken(address(wrappedToken)).ASSET(), Errors.TOKENS_MISMATCH); } function _getWrappedTokenRate() internal view override returns (uint256) { // This pulls in the implementation of `rate` used in the StaticAToken contract // except avoiding storing relevant variables in storage for gas reasons. // solhint-disable-next-line max-line-length // see: https://github.com/aave/protocol-v2/blob/ac58fea62bb8afee23f66197e8bce6d79ecda292/contracts/protocol/tokenization/StaticATokenLM.sol#L255-L257 uint256 rate = _lendingPool.getReserveNormalizedIncome(getMainToken()); // This function returns a 18 decimal fixed point number, but `rate` has 27 decimals (i.e. a 'ray' value) // so we need to convert it. return rate / 10**9; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./ILendingPool.sol"; interface IStaticAToken { /** * @dev returns the address of the staticAToken's underlying asset */ // solhint-disable-next-line func-name-mixedcase function ASSET() external view returns (address); /** * @dev returns the address of the staticAToken's lending pool */ // solhint-disable-next-line func-name-mixedcase function LENDING_POOL() external view returns (ILendingPool); /** * @dev returns a 27 decimal fixed point 'ray' value so a rate of 1 is represented as 1e27 */ function rate() external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ERC20Helpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-pool-utils/contracts/BasePool.sol"; import "@balancer-labs/v2-pool-utils/contracts/interfaces/IRateProvider.sol"; import "@balancer-labs/v2-pool-utils/contracts/rates/PriceRateCache.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IGeneralPool.sol"; import "./LinearMath.sol"; import "./LinearPoolUserData.sol"; /** * @dev Linear Pools are designed to hold two assets: "main" and "wrapped" tokens that have an equal value underlying * token (e.g., DAI and waDAI). There must be an external feed available to provide an exact, non-manipulable exchange * rate between the tokens. In particular, any reversible manipulation (e.g. causing the rate to increase and then * decrease) can lead to severe issues and loss of funds. * * The Pool will register three tokens in the Vault however: the two assets and the BPT itself, * so that BPT can be exchanged (effectively joining and exiting) via swaps. * * Despite inheriting from BasePool, much of the basic behavior changes. This Pool does not support regular joins and * exits, as the entire BPT supply is 'preminted' during initialization. * * Unlike most other Pools, this one does not attempt to create revenue by charging fees: value is derived by holding * the wrapped, yield-bearing asset. However, the 'swap fee percentage' value is still used, albeit with a different * meaning. This Pool attempts to hold a certain amount of "main" tokens, between a lower and upper target value. * The pool charges fees on trades that move the balance outside that range, which are then paid back as incentives to * traders whose swaps return the balance to the desired region. * The net revenue via fees is expected to be zero: all collected fees are used to pay for this 'rebalancing'. */ abstract contract LinearPool is BasePool, IGeneralPool, IRateProvider { using WordCodec for bytes32; using FixedPoint for uint256; using PriceRateCache for bytes32; using LinearPoolUserData for bytes; uint256 private constant _TOTAL_TOKENS = 3; // Main token, wrapped token, BPT // This is the maximum token amount the Vault can hold. In regular operation, the total BPT supply remains constant // and equal to _INITIAL_BPT_SUPPLY, but most of it remains in the Pool, waiting to be exchanged for tokens. The // actual amount of BPT in circulation is the total supply minus the amount held by the Pool, and is known as the // 'virtual supply'. // The total supply can only change if the emergency pause is activated by governance, enabling an // alternative proportional exit that burns BPT. As this is not expected to happen, we optimize for // success by using _INITIAL_BPT_SUPPLY instead of totalSupply(), saving a storage read. This optimization is only // valid if the Pool is never paused: in case of an emergency that leads to burned tokens, the Pool should not // be used after the buffer period expires and it automatically 'unpauses'. uint256 private constant _INITIAL_BPT_SUPPLY = 2**(112) - 1; IERC20 private immutable _mainToken; IERC20 private immutable _wrappedToken; // The indices of each token when registered, which can then be used to access the balances array. uint256 private immutable _bptIndex; uint256 private immutable _mainIndex; uint256 private immutable _wrappedIndex; // Both BPT and the main token have a regular, constant scaling factor (equal to FixedPoint.ONE for BPT, and // dependent on the number of decimals for the main token). However, the wrapped token's scaling factor has two // components: the usual token decimal scaling factor, and an externally provided rate used to convert wrapped // tokens to an equivalent main token amount. This external rate is expected to be ever increasing, reflecting the // fact that the wrapped token appreciates in value over time (e.g. because it is accruing interest). uint256 private immutable _scalingFactorMainToken; uint256 private immutable _scalingFactorWrappedToken; // The lower and upper target are in BasePool's misc data field, which has 192 bits available (as it shares the same // storage slot as the swap fee percentage, which is 64 bits). These are already scaled by the main token's scaling // factor, which means that the maximum upper target is ~80 billion in the main token units if the token were to // have 18 decimals (2^(192/2) / 10^18), which is more than enough. // [ 64 bits | 96 bits | 96 bits ] // [ reserved | upper target | lower target ] // [ base pool swap fee | misc data ] // [ MSB LSB ] uint256 private constant _LOWER_TARGET_OFFSET = 0; uint256 private constant _UPPER_TARGET_OFFSET = 96; uint256 private constant _MAX_UPPER_TARGET = 2**(96) - 1; event TargetsSet(IERC20 indexed token, uint256 lowerTarget, uint256 upperTarget); constructor( IVault vault, string memory name, string memory symbol, IERC20 mainToken, IERC20 wrappedToken, uint256 upperTarget, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, IVault.PoolSpecialization.GENERAL, name, symbol, _sortTokens(mainToken, wrappedToken, this), new address[](_TOTAL_TOKENS), swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { // Set tokens _mainToken = mainToken; _wrappedToken = wrappedToken; // Set token indexes (uint256 mainIndex, uint256 wrappedIndex, uint256 bptIndex) = _getSortedTokenIndexes( mainToken, wrappedToken, this ); _bptIndex = bptIndex; _mainIndex = mainIndex; _wrappedIndex = wrappedIndex; // Set scaling factors _scalingFactorMainToken = _computeScalingFactor(mainToken); _scalingFactorWrappedToken = _computeScalingFactor(wrappedToken); // Set initial targets. Lower target must be set to zero because initially there are no fees accumulated. // Otherwise the pool will owe fees at start which results in a manipulable rate. uint256 lowerTarget = 0; _setTargets(mainToken, lowerTarget, upperTarget); } function getMainToken() public view returns (address) { return address(_mainToken); } function getWrappedToken() external view returns (address) { return address(_wrappedToken); } function getBptIndex() external view returns (uint256) { return _bptIndex; } function getMainIndex() external view returns (uint256) { return _mainIndex; } function getWrappedIndex() external view returns (uint256) { return _wrappedIndex; } /** * @dev Finishes initialization of the Linear Pool: it is unusable before calling this function as no BPT will have * been minted. * * Since Linear Pools have preminted BPT stored in the Vault, they require an initial join to deposit said BPT as * their balance. Unfortunately, this cannot be performed during construction, as a join involves calling the * `onJoinPool` function on the Pool, and the Pool will not have any code until construction finishes. Therefore, * this must happen in a separate call. * * It is highly recommended to create Linear pools using the LinearPoolFactory, which calls `initialize` * automatically. */ function initialize() external { bytes32 poolId = getPoolId(); (IERC20[] memory tokens, , ) = getVault().getPoolTokens(poolId); // Joins typically involve the Pool receiving tokens in exchange for newly-minted BPT. In this case however, the // Pool will mint the entire BPT supply to itself, and join itself with it. uint256[] memory maxAmountsIn = new uint256[](_TOTAL_TOKENS); maxAmountsIn[_bptIndex] = _INITIAL_BPT_SUPPLY; // The first time this executes, it will call `_onInitializePool` (as the BPT supply will be zero). Future calls // will be routed to `_onJoinPool`, which always reverts, meaning `initialize` will only execute once. IVault.JoinPoolRequest memory request = IVault.JoinPoolRequest({ assets: _asIAsset(tokens), maxAmountsIn: maxAmountsIn, userData: "", fromInternalBalance: false }); getVault().joinPool(poolId, address(this), address(this), request); } /** * @dev Implementation of onSwap, from IGeneralPool. */ function onSwap( SwapRequest memory request, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) public view override onlyVault(request.poolId) whenNotPaused returns (uint256) { // In most Pools, swaps involve exchanging one token held by the Pool for another. In this case however, since // one of the three tokens is the BPT itself, a swap might also be a join (main/wrapped for BPT) or an exit // (BPT for main/wrapped). // All three swap types (swaps, joins and exits) are fully disabled if the emergency pause is enabled. Under // these circumstances, the Pool should be exited using the regular Vault.exitPool function. // Sanity check: this is not entirely necessary as the Vault's interface enforces the indices to be valid, but // the check is cheap to perform. _require(indexIn < _TOTAL_TOKENS && indexOut < _TOTAL_TOKENS, Errors.OUT_OF_BOUNDS); // Note that we already know the indices of the main token, wrapped token and BPT, so there is no need to pass // these indices to the inner functions. // Upscale balances by the scaling factors (taking into account the wrapped token rate) uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 lowerTarget, uint256 upperTarget) = getTargets(); LinearMath.Params memory params = LinearMath.Params({ fee: getSwapFeePercentage(), lowerTarget: lowerTarget, upperTarget: upperTarget }); if (request.kind == IVault.SwapKind.GIVEN_IN) { // The amount given is for token in, the amount calculated is for token out request.amount = _upscale(request.amount, scalingFactors[indexIn]); uint256 amountOut = _onSwapGivenIn(request, balances, params); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactors[indexOut]); } else { // The amount given is for token out, the amount calculated is for token in request.amount = _upscale(request.amount, scalingFactors[indexOut]); uint256 amountIn = _onSwapGivenOut(request, balances, params); // amountIn tokens are entering the Pool, so we round up. return _downscaleUp(amountIn, scalingFactors[indexIn]); } } function _onSwapGivenIn( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { if (request.tokenIn == this) { return _swapGivenBptIn(request, balances, params); } else if (request.tokenIn == _mainToken) { return _swapGivenMainIn(request, balances, params); } else if (request.tokenIn == _wrappedToken) { return _swapGivenWrappedIn(request, balances, params); } else { _revert(Errors.INVALID_TOKEN); } } function _swapGivenBptIn( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { _require(request.tokenOut == _mainToken || request.tokenOut == _wrappedToken, Errors.INVALID_TOKEN); return (request.tokenOut == _mainToken ? LinearMath._calcMainOutPerBptIn : LinearMath._calcWrappedOutPerBptIn)( request.amount, balances[_mainIndex], balances[_wrappedIndex], _getApproximateVirtualSupply(balances[_bptIndex]), params ); } function _swapGivenMainIn( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { _require(request.tokenOut == _wrappedToken || request.tokenOut == this, Errors.INVALID_TOKEN); return request.tokenOut == this ? LinearMath._calcBptOutPerMainIn( request.amount, balances[_mainIndex], balances[_wrappedIndex], _getApproximateVirtualSupply(balances[_bptIndex]), params ) : LinearMath._calcWrappedOutPerMainIn(request.amount, balances[_mainIndex], params); } function _swapGivenWrappedIn( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { _require(request.tokenOut == _mainToken || request.tokenOut == this, Errors.INVALID_TOKEN); return request.tokenOut == this ? LinearMath._calcBptOutPerWrappedIn( request.amount, balances[_mainIndex], balances[_wrappedIndex], _getApproximateVirtualSupply(balances[_bptIndex]), params ) : LinearMath._calcMainOutPerWrappedIn(request.amount, balances[_mainIndex], params); } function _onSwapGivenOut( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { if (request.tokenOut == this) { return _swapGivenBptOut(request, balances, params); } else if (request.tokenOut == _mainToken) { return _swapGivenMainOut(request, balances, params); } else if (request.tokenOut == _wrappedToken) { return _swapGivenWrappedOut(request, balances, params); } else { _revert(Errors.INVALID_TOKEN); } } function _swapGivenBptOut( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { _require(request.tokenIn == _mainToken || request.tokenIn == _wrappedToken, Errors.INVALID_TOKEN); return (request.tokenIn == _mainToken ? LinearMath._calcMainInPerBptOut : LinearMath._calcWrappedInPerBptOut)( request.amount, balances[_mainIndex], balances[_wrappedIndex], _getApproximateVirtualSupply(balances[_bptIndex]), params ); } function _swapGivenMainOut( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { _require(request.tokenIn == _wrappedToken || request.tokenIn == this, Errors.INVALID_TOKEN); return request.tokenIn == this ? LinearMath._calcBptInPerMainOut( request.amount, balances[_mainIndex], balances[_wrappedIndex], _getApproximateVirtualSupply(balances[_bptIndex]), params ) : LinearMath._calcWrappedInPerMainOut(request.amount, balances[_mainIndex], params); } function _swapGivenWrappedOut( SwapRequest memory request, uint256[] memory balances, LinearMath.Params memory params ) internal view returns (uint256) { _require(request.tokenIn == _mainToken || request.tokenIn == this, Errors.INVALID_TOKEN); return request.tokenIn == this ? LinearMath._calcBptInPerWrappedOut( request.amount, balances[_mainIndex], balances[_wrappedIndex], _getApproximateVirtualSupply(balances[_bptIndex]), params ) : LinearMath._calcMainInPerWrappedOut(request.amount, balances[_mainIndex], params); } function _onInitializePool( bytes32, address sender, address recipient, uint256[] memory, bytes memory ) internal view override whenNotPaused returns (uint256, uint256[] memory) { // Linear Pools can only be initialized by the Pool performing the initial join via the `initialize` function. _require(sender == address(this), Errors.INVALID_INITIALIZATION); _require(recipient == address(this), Errors.INVALID_INITIALIZATION); // The full BPT supply will be minted and deposited in the Pool. Note that there is no need to approve the Vault // as it already has infinite BPT allowance. uint256 bptAmountOut = _INITIAL_BPT_SUPPLY; uint256[] memory amountsIn = new uint256[](_TOTAL_TOKENS); amountsIn[_bptIndex] = _INITIAL_BPT_SUPPLY; return (bptAmountOut, amountsIn); } function _onJoinPool( bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory ) internal pure override returns ( uint256, uint256[] memory, uint256[] memory ) { _revert(Errors.UNHANDLED_BY_LINEAR_POOL); } function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256, uint256[] memory, bytes memory userData ) internal view override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // Exits typically revert, except for the proportional exit when the emergency pause mechanism has been // triggered. This allows for a simple and safe way to exit the Pool. // Note that the rate cache will not be automatically updated in such a scenario (though this can be still done // manually). This however should not lead to any issues as the rate is not important during the emergency exit. // On the contrary, decoupling the rate provider from the emergency exit might be useful under these // circumstances. LinearPoolUserData.ExitKind kind = userData.exitKind(); if (kind != LinearPoolUserData.ExitKind.EMERGENCY_EXACT_BPT_IN_FOR_TOKENS_OUT) { _revert(Errors.UNHANDLED_BY_LINEAR_POOL); } else { _ensurePaused(); // Note that this will cause the user's BPT to be burned, which is not something that happens during // regular operation of this Pool, and may lead to accounting errors. Because of this, it is highly // advisable to stop using a Pool after it is paused and the pause window expires. (bptAmountIn, amountsOut) = _emergencyProportionalExit(balances, userData); // Due protocol fees are set to zero as this Pool accrues no fees and pays no protocol fees. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } } function _emergencyProportionalExit(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This proportional exit function is only enabled if the contract is paused, to provide users a way to // retrieve their tokens in case of an emergency. // // This particular exit function is the only one available because it is the simplest, and therefore least // likely to be incorrect, or revert and lock funds. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. // This process burns BPT, rendering `_getApproximateVirtualSupply` inaccurate, so we use the real method here uint256[] memory amountsOut = LinearMath._calcTokensOutGivenExactBptIn( balances, bptAmountIn, _getVirtualSupply(balances[_bptIndex]), _bptIndex ); return (bptAmountIn, amountsOut); } function _getMaxTokens() internal pure override returns (uint256) { return _TOTAL_TOKENS; } function _getMinimumBpt() internal pure override returns (uint256) { // Linear Pools don't lock any BPT, as the total supply will already be forever non-zero due to the preminting // mechanism, ensuring initialization only occurs once. return 0; } function _getTotalTokens() internal view virtual override returns (uint256) { return _TOTAL_TOKENS; } function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { if (token == _mainToken) { return _scalingFactorMainToken; } else if (token == _wrappedToken) { // The wrapped token's scaling factor is not constant, but increases over time as the wrapped token // increases in value. return _scalingFactorWrappedToken.mulDown(_getWrappedTokenRate()); } else if (token == this) { return FixedPoint.ONE; } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256[] memory scalingFactors = new uint256[](_TOTAL_TOKENS); // The wrapped token's scaling factor is not constant, but increases over time as the wrapped token increases in // value. scalingFactors[_mainIndex] = _scalingFactorMainToken; scalingFactors[_wrappedIndex] = _scalingFactorWrappedToken.mulDown(_getWrappedTokenRate()); scalingFactors[_bptIndex] = FixedPoint.ONE; return scalingFactors; } // Price rates /** * @dev For a Linear Pool, the rate represents the appreciation of BPT with respect to the underlying tokens. This * rate increases slowly as the wrapped token appreciates in value. */ function getRate() external view override returns (uint256) { bytes32 poolId = getPoolId(); (, uint256[] memory balances, ) = getVault().getPoolTokens(poolId); _upscaleArray(balances, _scalingFactors()); (uint256 lowerTarget, uint256 upperTarget) = getTargets(); LinearMath.Params memory params = LinearMath.Params({ fee: getSwapFeePercentage(), lowerTarget: lowerTarget, upperTarget: upperTarget }); uint256 totalBalance = LinearMath._calcInvariant( LinearMath._toNominal(balances[_mainIndex], params), balances[_wrappedIndex] ); // Note that we're dividing by the virtual supply, which may be zero (causing this call to revert). However, the // only way for that to happen would be for all LPs to exit the Pool, and nothing prevents new LPs from // joining it later on. return totalBalance.divUp(_getApproximateVirtualSupply(balances[_bptIndex])); } function getWrappedTokenRate() external view returns (uint256) { return _getWrappedTokenRate(); } function _getWrappedTokenRate() internal view virtual returns (uint256); function getTargets() public view returns (uint256 lowerTarget, uint256 upperTarget) { bytes32 miscData = _getMiscData(); lowerTarget = miscData.decodeUint96(_LOWER_TARGET_OFFSET); upperTarget = miscData.decodeUint96(_UPPER_TARGET_OFFSET); } function _setTargets( IERC20 mainToken, uint256 lowerTarget, uint256 upperTarget ) private { _require(lowerTarget <= upperTarget, Errors.LOWER_GREATER_THAN_UPPER_TARGET); _require(upperTarget <= _MAX_UPPER_TARGET, Errors.UPPER_TARGET_TOO_HIGH); // Pack targets as two uint96 values into a single storage slot. This results in targets being capped to 96 // bits, but that should be more than enough. _setMiscData( WordCodec.encodeUint(lowerTarget, _LOWER_TARGET_OFFSET) | WordCodec.encodeUint(upperTarget, _UPPER_TARGET_OFFSET) ); emit TargetsSet(mainToken, lowerTarget, upperTarget); } function setTargets(uint256 newLowerTarget, uint256 newUpperTarget) external authenticate { // For a new target range to be valid: // - the pool must currently be between the current targets (meaning no fees are currently pending) // - the pool must currently be between the new targets (meaning setting them does not cause for fees to be // pending) // // The first requirement could be relaxed, as the LPs actually benefit from the pending fees not being paid out, // but being stricter makes analysis easier at little expense. (uint256 currentLowerTarget, uint256 currentUpperTarget) = getTargets(); _require(_isMainBalanceWithinTargets(currentLowerTarget, currentUpperTarget), Errors.OUT_OF_TARGET_RANGE); _require(_isMainBalanceWithinTargets(newLowerTarget, newUpperTarget), Errors.OUT_OF_NEW_TARGET_RANGE); _setTargets(_mainToken, newLowerTarget, newUpperTarget); } function setSwapFeePercentage(uint256 swapFeePercentage) public override { // For the swap fee percentage to be changeable: // - the pool must currently be between the current targets (meaning no fees are currently pending) // // As the amount of accrued fees is not explicitly stored but rather derived from the main token balance and the // current swap fee percentage, requiring for no fees to be pending prevents the fee setter from changing the // amount of pending fees, which they could use to e.g. drain Pool funds in the form of inflated fees. (uint256 lowerTarget, uint256 upperTarget) = getTargets(); _require(_isMainBalanceWithinTargets(lowerTarget, upperTarget), Errors.OUT_OF_TARGET_RANGE); super.setSwapFeePercentage(swapFeePercentage); } function _isMainBalanceWithinTargets(uint256 lowerTarget, uint256 upperTarget) private view returns (bool) { bytes32 poolId = getPoolId(); (, uint256[] memory balances, ) = getVault().getPoolTokens(poolId); uint256 mainTokenBalance = _upscale(balances[_mainIndex], _scalingFactor(_mainToken)); return mainTokenBalance >= lowerTarget && mainTokenBalance <= upperTarget; } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return actionId == getActionId(this.setTargets.selector) || super._isOwnerOnlyAction(actionId); } /** * @dev Returns the number of tokens in circulation. * * In other pools, this would be the same as `totalSupply`, but since this pool pre-mints all BPT, `totalSupply` * remains constant, whereas `virtualSupply` increases as users join the pool and decreases as they exit it. */ function getVirtualSupply() external view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // We technically don't need to upscale the BPT balance as its scaling factor is equal to one (since BPT has // 18 decimals), but we do it for completeness. uint256 bptBalance = _upscale(balances[_bptIndex], _scalingFactor(this)); return _getVirtualSupply(bptBalance); } function _getVirtualSupply(uint256 bptBalance) internal view returns (uint256) { return totalSupply().sub(bptBalance); } /** * @dev Computes an approximation of virtual supply, which costs less gas than `_getVirtualSupply` and returns the * same value in all cases except when the emergency pause has been enabled and BPT burned as part of the emergency * exit process. */ function _getApproximateVirtualSupply(uint256 bptBalance) internal pure returns (uint256) { // No need for checked arithmetic as _INITIAL_BPT_SUPPLY is always greater than any valid Vault BPT balance. return _INITIAL_BPT_SUPPLY - bptBalance; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface ILendingPool { /** * @dev returns a 27 decimal fixed point 'ray' value so a rate of 1 is represented as 1e27 */ function getReserveNormalizedIncome(address asset) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339; uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340; uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341; uint256 internal constant INVALID_INITIALIZATION = 342; uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343; uint256 internal constant UNAUTHORIZED_OPERATION = 344; uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; uint256 internal constant NOT_PAUSED = 431; uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432; uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol"; import "../openzeppelin/IERC20.sol"; // solhint-disable function _asIAsset(IERC20[] memory tokens) pure returns (IAsset[] memory assets) { // solhint-disable-next-line no-inline-assembly assembly { assets := tokens } } function _sortTokens( IERC20 tokenA, IERC20 tokenB, IERC20 tokenC ) pure returns (IERC20[] memory tokens) { (uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC) = _getSortedTokenIndexes(tokenA, tokenB, tokenC); tokens = new IERC20[](3); tokens[indexTokenA] = tokenA; tokens[indexTokenB] = tokenB; tokens[indexTokenC] = tokenC; } function _insertSorted(IERC20[] memory tokens, IERC20 token) pure returns (IERC20[] memory sorted) { sorted = new IERC20[](tokens.length + 1); if (tokens.length == 0) { sorted[0] = token; return sorted; } uint256 i; for (i = tokens.length; i > 0 && tokens[i - 1] > token; i--) sorted[i] = tokens[i - 1]; for (uint256 j = 0; j < i; j++) sorted[j] = tokens[j]; sorted[i] = token; } function _getSortedTokenIndexes( IERC20 tokenA, IERC20 tokenB, IERC20 tokenC ) pure returns ( uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC ) { if (tokenA < tokenB) { if (tokenB < tokenC) { // (tokenA, tokenB, tokenC) return (0, 1, 2); } else if (tokenA < tokenC) { // (tokenA, tokenC, tokenB) return (0, 2, 1); } else { // (tokenC, tokenA, tokenB) return (1, 2, 0); } } else { // tokenB < tokenA if (tokenC < tokenB) { // (tokenC, tokenB, tokenA) return (2, 1, 0); } else if (tokenC < tokenA) { // (tokenB, tokenC, tokenA) return (2, 0, 1); } else { // (tokenB, tokenA, tokenC) return (1, 0, 2); } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol"; import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using WordCodec for bytes32; using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _DEFAULT_MINIMUM_BPT = 1e6; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol, vault) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _poolId = poolId; } // Getters / Setters function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); /** * @dev Returns the minimum BPT supply. This amount is minted to the zero address during initialization, effectively * locking it. * * This is useful to make sure Pool initialization happens only once, but derived Pools can change this value (even * to zero) by overriding this function. */ function _getMinimumBpt() internal pure virtual returns (uint256) { return _DEFAULT_MINIMUM_BPT; } function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the // Pool from ever being fully drained. _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _getMinimumBpt()); _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt()); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire * Pool's lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { if (address(token) == address(this)) { return FixedPoint.ONE; } // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IRateProvider { /** * @dev Returns an 18 decimal fixed point number that is the exchange rate of the token to some other underlying * token. The meaning of this rate depends on the context. */ function getRate() external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; /** * Price rate caches are used to avoid querying the price rate for a token every time we need to work with it. It is * useful for slow changing rates, such as those that arise from interest-bearing tokens (e.g. waDAI into DAI). * * The cache data is packed into a single bytes32 value with the following structure: * [ expires | duration | price rate value ] * [ uint64 | uint64 | uint128 ] * [ MSB LSB ] * * * 'rate' is an 18 decimal fixed point number, supporting rates of up to ~3e20. 'expires' is a Unix timestamp, and * 'duration' is expressed in seconds. */ library PriceRateCache { using WordCodec for bytes32; uint256 private constant _PRICE_RATE_CACHE_VALUE_OFFSET = 0; uint256 private constant _PRICE_RATE_CACHE_DURATION_OFFSET = 128; uint256 private constant _PRICE_RATE_CACHE_EXPIRES_OFFSET = 128 + 64; /** * @dev Returns the rate of a price rate cache. */ function getRate(bytes32 cache) internal pure returns (uint256) { return cache.decodeUint128(_PRICE_RATE_CACHE_VALUE_OFFSET); } /** * @dev Returns the duration of a price rate cache. */ function getDuration(bytes32 cache) internal pure returns (uint256) { return cache.decodeUint64(_PRICE_RATE_CACHE_DURATION_OFFSET); } /** * @dev Returns the duration and expiration time of a price rate cache. */ function getTimestamps(bytes32 cache) internal pure returns (uint256 duration, uint256 expires) { duration = getDuration(cache); expires = cache.decodeUint64(_PRICE_RATE_CACHE_EXPIRES_OFFSET); } /** * @dev Encodes rate and duration into a price rate cache. The expiration time is computed automatically, counting * from the current time. */ function encode(uint256 rate, uint256 duration) internal view returns (bytes32) { _require(rate < 2**128, Errors.PRICE_RATE_OVERFLOW); // solhint-disable not-rely-on-time return WordCodec.encodeUint(uint128(rate), _PRICE_RATE_CACHE_VALUE_OFFSET) | WordCodec.encodeUint(uint64(duration), _PRICE_RATE_CACHE_DURATION_OFFSET) | WordCodec.encodeUint(uint64(block.timestamp + duration), _PRICE_RATE_CACHE_EXPIRES_OFFSET); } /** * @dev Returns rate, duration and expiration time of a price rate cache. */ function decode(bytes32 cache) internal pure returns ( uint256 rate, uint256 duration, uint256 expires ) { rate = getRate(cache); (duration, expires) = getTimestamps(cache); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev IPools with the General specialization setting should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will * grant to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IGeneralPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; // These functions start with an underscore, as if they were part of a contract and not a library. At some point this // should be fixed. // solhint-disable private-vars-leading-underscore library LinearMath { using FixedPoint for uint256; // A thorough derivation of the formulas and derivations found here exceeds the scope of this file, so only // introductory notions will be presented. // A Linear Pool holds three tokens: the main token, the wrapped token, and the Pool share token (BPT). It is // possible to exchange any of these tokens for any of the other two (so we have three trading pairs) in both // directions (the first token of each pair can be bought or sold for the second) and by specifying either the input // or output amount (typically referred to as 'given in' or 'given out'). A full description thus requires // 3*2*2 = 12 functions. // Wrapped tokens have a known, trusted exchange rate to main tokens. All functions here assume such a rate has // already been applied, meaning main and wrapped balances can be compared as they are both expressed in the same // units (those of main token). // Additionally, Linear Pools feature a lower and upper target that represent the desired range of values for the // main token balance. Any action that moves the main balance away from this range is charged a proportional fee, // and any action that moves it towards this range is incentivized by paying the actor using these collected fees. // The collected fees are not stored in a separate data structure: they are a function of the current main balance, // targets and fee percentage. The main balance sans fees is known as the 'nominal balance', which is always smaller // than the real balance except when the real balance is within the targets. // The rule under which Linear Pools conduct trades between main and wrapped tokens is by keeping the sum of nominal // main balance and wrapped balance constant: this value is known as the 'invariant'. BPT is backed by nominal // reserves, meaning its supply is proportional to the invariant. As the wrapped token appreciates in value and its // exchange rate to the main token increases, so does the invariant and thus the value of BPT (in main token units). struct Params { uint256 fee; uint256 lowerTarget; uint256 upperTarget; } function _calcBptOutPerMainIn( uint256 mainIn, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount out, so we round down overall. if (bptSupply == 0) { // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the // BPT supply is initialized to equal the invariant (which in this case is just the nominal main balance as // there is no wrapped balance). return _toNominal(mainIn, params); } uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 afterNominalMain = _toNominal(mainBalance.add(mainIn), params); uint256 deltaNominalMain = afterNominalMain.sub(previousNominalMain); uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance); return Math.divDown(Math.mul(bptSupply, deltaNominalMain), invariant); } function _calcBptInPerMainOut( uint256 mainOut, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount in, so we round up overall. uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 afterNominalMain = _toNominal(mainBalance.sub(mainOut), params); uint256 deltaNominalMain = previousNominalMain.sub(afterNominalMain); uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance); return Math.divUp(Math.mul(bptSupply, deltaNominalMain), invariant); } function _calcWrappedOutPerMainIn( uint256 mainIn, uint256 mainBalance, Params memory params ) internal pure returns (uint256) { // Amount out, so we round down overall. uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 afterNominalMain = _toNominal(mainBalance.add(mainIn), params); return afterNominalMain.sub(previousNominalMain); } function _calcWrappedInPerMainOut( uint256 mainOut, uint256 mainBalance, Params memory params ) internal pure returns (uint256) { // Amount in, so we round up overall. uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 afterNominalMain = _toNominal(mainBalance.sub(mainOut), params); return previousNominalMain.sub(afterNominalMain); } function _calcMainInPerBptOut( uint256 bptOut, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount in, so we round up overall. if (bptSupply == 0) { // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the // BPT supply is initialized to equal the invariant (which in this case is just the nominal main balance as // there is no wrapped balance). return _fromNominal(bptOut, params); } uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance); uint256 deltaNominalMain = Math.divUp(Math.mul(invariant, bptOut), bptSupply); uint256 afterNominalMain = previousNominalMain.add(deltaNominalMain); uint256 newMainBalance = _fromNominal(afterNominalMain, params); return newMainBalance.sub(mainBalance); } function _calcMainOutPerBptIn( uint256 bptIn, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount out, so we round down overall. uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance); uint256 deltaNominalMain = Math.divDown(Math.mul(invariant, bptIn), bptSupply); uint256 afterNominalMain = previousNominalMain.sub(deltaNominalMain); uint256 newMainBalance = _fromNominal(afterNominalMain, params); return mainBalance.sub(newMainBalance); } function _calcMainOutPerWrappedIn( uint256 wrappedIn, uint256 mainBalance, Params memory params ) internal pure returns (uint256) { // Amount out, so we round down overall. uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 afterNominalMain = previousNominalMain.sub(wrappedIn); uint256 newMainBalance = _fromNominal(afterNominalMain, params); return mainBalance.sub(newMainBalance); } function _calcMainInPerWrappedOut( uint256 wrappedOut, uint256 mainBalance, Params memory params ) internal pure returns (uint256) { // Amount in, so we round up overall. uint256 previousNominalMain = _toNominal(mainBalance, params); uint256 afterNominalMain = previousNominalMain.add(wrappedOut); uint256 newMainBalance = _fromNominal(afterNominalMain, params); return newMainBalance.sub(mainBalance); } function _calcBptOutPerWrappedIn( uint256 wrappedIn, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount out, so we round down overall. if (bptSupply == 0) { // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the // BPT supply is initialized to equal the invariant (which in this case is just the wrapped balance as // there is no main balance). return wrappedIn; } uint256 nominalMain = _toNominal(mainBalance, params); uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance); uint256 newWrappedBalance = wrappedBalance.add(wrappedIn); uint256 newInvariant = _calcInvariant(nominalMain, newWrappedBalance); uint256 newBptBalance = Math.divDown(Math.mul(bptSupply, newInvariant), previousInvariant); return newBptBalance.sub(bptSupply); } function _calcBptInPerWrappedOut( uint256 wrappedOut, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount in, so we round up overall. uint256 nominalMain = _toNominal(mainBalance, params); uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance); uint256 newWrappedBalance = wrappedBalance.sub(wrappedOut); uint256 newInvariant = _calcInvariant(nominalMain, newWrappedBalance); uint256 newBptBalance = Math.divDown(Math.mul(bptSupply, newInvariant), previousInvariant); return bptSupply.sub(newBptBalance); } function _calcWrappedInPerBptOut( uint256 bptOut, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount in, so we round up overall. if (bptSupply == 0) { // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the // BPT supply is initialized to equal the invariant (which in this case is just the wrapped balance as // there is no main balance). return bptOut; } uint256 nominalMain = _toNominal(mainBalance, params); uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance); uint256 newBptBalance = bptSupply.add(bptOut); uint256 newWrappedBalance = Math.divUp(Math.mul(newBptBalance, previousInvariant), bptSupply).sub(nominalMain); return newWrappedBalance.sub(wrappedBalance); } function _calcWrappedOutPerBptIn( uint256 bptIn, uint256 mainBalance, uint256 wrappedBalance, uint256 bptSupply, Params memory params ) internal pure returns (uint256) { // Amount out, so we round down overall. uint256 nominalMain = _toNominal(mainBalance, params); uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance); uint256 newBptBalance = bptSupply.sub(bptIn); uint256 newWrappedBalance = Math.divUp(Math.mul(newBptBalance, previousInvariant), bptSupply).sub(nominalMain); return wrappedBalance.sub(newWrappedBalance); } function _calcInvariant(uint256 nominalMainBalance, uint256 wrappedBalance) internal pure returns (uint256) { return nominalMainBalance.add(wrappedBalance); } function _toNominal(uint256 real, Params memory params) internal pure returns (uint256) { // Fees are always rounded down: either direction would work but we need to be consistent, and rounding down // uses less gas. if (real < params.lowerTarget) { uint256 fees = (params.lowerTarget - real).mulDown(params.fee); return real.sub(fees); } else if (real <= params.upperTarget) { return real; } else { uint256 fees = (real - params.upperTarget).mulDown(params.fee); return real.sub(fees); } } function _fromNominal(uint256 nominal, Params memory params) internal pure returns (uint256) { // Since real = nominal + fees, rounding down fees is equivalent to rounding down real. if (nominal < params.lowerTarget) { return (nominal.add(params.fee.mulDown(params.lowerTarget))).divDown(FixedPoint.ONE.add(params.fee)); } else if (nominal <= params.upperTarget) { return nominal; } else { return (nominal.sub(params.fee.mulDown(params.upperTarget)).divDown(FixedPoint.ONE.sub(params.fee))); } } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 bptIndex ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = tokenAmountOut / bptIn \ // // b = tokenBalance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ bptTotalSupply / // // bpt = bptTotalSupply // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { // BPT is skipped as those tokens are not the LPs, but rather the preminted and undistributed amount. if (i != bptIndex) { amountsOut[i] = balances[i].mulDown(bptRatio); } } return amountsOut; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LinearPool.sol"; library LinearPoolUserData { enum ExitKind { EMERGENCY_EXACT_BPT_IN_FOR_TOKENS_OUT } function exitKind(bytes memory self) internal pure returns (ExitKind) { return abi.decode(self, (ExitKind)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (ExitKind, uint256)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library. */ library Math { /** * @dev Returns the absolute value of a signed integer. */ function abs(int256 a) internal pure returns (uint256) { return a > 0 ? uint256(a) : uint256(-a); } /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Reverts if the contract is not paused. */ function _ensurePaused() internal view { _require(!_isNotPaused(), Errors.NOT_PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. * * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location), * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive, * and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and * unpacking is therefore the preferred approach. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_5 = 2**(5) - 1; uint256 private constant _MASK_7 = 2**(7) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_16 = 2**(16) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_32 = 2**(32) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; uint256 private constant _MASK_96 = 2**(96) - 1; uint256 private constant _MASK_128 = 2**(128) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes. */ function insertUint5( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes. */ function insertUint7( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes. */ function insertUint16( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes. */ function insertUint32( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Bytes /** * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_5; } /** * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_7; } /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_16; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_32; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } /** * @dev Decodes and returns a 96 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint96(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_96; } /** * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_128; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` * - Assigns infinite allowance for all token holders to the Vault */ contract BalancerPoolToken is ERC20Permit { IVault private immutable _vault; constructor( string memory tokenName, string memory tokenSymbol, IVault vault ) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { _vault = vault; } function getVault() public view returns (IVault) { return _vault; } // Overrides /** * @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval. * * This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this * contract inherits. */ function allowance(address owner, address spender) public view override returns (uint256) { if (spender == address(getVault())) { return uint256(-1); } else { return super.allowance(owner, spender); } } /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
{ "optimizer": { "enabled": true, "runs": 9999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20","name":"mainToken","type":"address"},{"internalType":"contract IERC20","name":"wrappedToken","type":"address"},{"internalType":"uint256","name":"upperTarget","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"lowerTarget","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"upperTarget","type":"uint256"}],"name":"TargetsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBptIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMainIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMainToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTargets","outputs":[{"internalType":"uint256","name":"lowerTarget","type":"uint256"},{"internalType":"uint256","name":"upperTarget","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVirtualSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWrappedIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWrappedToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWrappedTokenRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"indexIn","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newLowerTarget","type":"uint256"},{"internalType":"uint256","name":"newUpperTarget","type":"uint256"}],"name":"setTargets","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6102c06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620053be380380620053be8339810160408190526200005a9162000bbf565b898989898989898989898960008a8a620000768b8b30620004e1565b6040805160038082526080820190925290602082016060803683370190505089898989828289898d8280604051806040016040528060018152602001603160f81b81525085858a336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b815250505081600390805190602001906200010992919062000a30565b5080516200011f90600490602084019062000a30565b505060058054601260ff1990911617905550815160209283012060c052805191012060e052507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005260601b6001600160601b03191661014052506200019290506276a700831115610194620005b0565b620001a662278d00821115610195620005b0565b4290910161016081905201610180528551620001c8906002111560c8620005b0565b620001e2620001d6620005c5565b8751111560c9620005b0565b620001f886620005ca60201b620014881760201c565b6200020384620005d6565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f9062000234908d9060040162000d5d565b602060405180830381600087803b1580156200024f57600080fd5b505af115801562000264573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200028a919062000ba6565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002bf9084908b908b9060040162000cc1565b600060405180830381600087803b158015620002da57600080fd5b505af1158015620002ef573d6000803e3d6000fd5b50505050806101a081815250505050505050505050505050866001600160a01b03166101c0816001600160a01b031660601b81525050856001600160a01b03166101e0816001600160a01b031660601b8152505060008060006200035b8a8a306200066260201b60201c565b610200819052610220839052610240829052919450925090506200037f8a62000758565b610260526200038e8962000758565b610280526000620003a18b828b6200082c565b5050505050505050505050505050856001600160a01b031663b4dcfc776040518163ffffffff1660e01b815260040160206040518083038186803b158015620003e957600080fd5b505afa158015620003fe573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000424919062000b80565b6001600160a01b03166102a0816001600160a01b031660601b81525050620004d1866001600160a01b0316634800d97f6040518163ffffffff1660e01b815260040160206040518083038186803b1580156200047f57600080fd5b505afa15801562000494573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620004ba919062000b80565b6001600160a01b03898116911614610208620005b0565b5050505050505050505062000dab565b606060008080620004f487878762000662565b60408051600380825260808201909252939650919450925060208201606080368337019050509350868484815181106200052a57fe5b60200260200101906001600160a01b031690816001600160a01b031681525050858483815181106200055857fe5b60200260200101906001600160a01b031690816001600160a01b031681525050848482815181106200058657fe5b60200260200101906001600160a01b031690816001600160a01b0316815250505050509392505050565b81620005c157620005c181620008da565b5050565b600390565b80620005c1816200092d565b620005eb64e8d4a5100082101560cb620005b0565b6200060367016345785d8a000082111560ca620005b0565b620006228160c0600854620009ba60201b62001492179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200065790839062000d72565b60405180910390a150565b6000806000846001600160a01b0316866001600160a01b03161015620006eb57836001600160a01b0316856001600160a01b03161015620006ae5750600091506001905060026200074f565b836001600160a01b0316866001600160a01b03161015620006da5750600091506002905060016200074f565b50600191506002905060006200074f565b846001600160a01b0316846001600160a01b03161015620007175750600291506001905060006200074f565b856001600160a01b0316846001600160a01b03161015620007435750600291506000905060016200074f565b50600191506000905060025b93509350939050565b60006001600160a01b0382163014156200077c5750670de0b6b3a764000062000827565b6000826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015620007b857600080fd5b505afa158015620007cd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620007f3919062000c9e565b60ff169050600062000812601283620009cf60201b620014a81760201c565b905080600a0a670de0b6b3a764000002925050505b919050565b6200083d8183111561014c620005b0565b620008556001600160601b0382111561014d620005b0565b6200089062000871826060620009ec60201b620014be1760201c565b62000889846000620009ec60201b620014be1760201c565b17620009f0565b826001600160a01b03167fd0e27a0d0c2cb09280fa5e4487315455b32afcdcf012dc35b6ef2a0e3c4d12808383604051620008cd92919062000d7b565b60405180910390a2505050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6002815110156200093e57620009b7565b6000816000815181106200094e57fe5b602002602001015190506000600190505b8251811015620009b45760008382815181106200097857fe5b60200260200101519050620009a9816001600160a01b0316846001600160a01b0316106065620005b060201b60201c565b91506001016200095f565b50505b50565b6001600160401b03811b1992909216911b1790565b6000620009e1838311156001620005b0565b508082035b92915050565b1b90565b62000a0f81600060085462000a1560201b620014c2179092919060201c565b60085550565b6001600160c01b03828116821b90821b198416179392505050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000a7357805160ff191683800117855562000aa3565b8280016001018555821562000aa3579182015b8281111562000aa357825182559160200191906001019062000a86565b5062000ab192915062000ab5565b5090565b5b8082111562000ab1576000815560010162000ab6565b8051620009e68162000d95565b600082601f83011262000aea578081fd5b81516001600160401b038082111562000b01578283fd5b6040516020601f8401601f191682018101838111838210171562000b23578586fd5b8060405250819450838252868185880101111562000b4057600080fd5b600092505b8383101562000b64578583018101518284018201529182019162000b45565b8383111562000b765760008185840101525b5050505092915050565b60006020828403121562000b92578081fd5b815162000b9f8162000d95565b9392505050565b60006020828403121562000bb8578081fd5b5051919050565b6000806000806000806000806000806101408b8d03121562000bdf578586fd5b62000beb8c8c62000acc565b60208c0151909a506001600160401b038082111562000c08578788fd5b62000c168e838f0162000ad9565b9a5060408d015191508082111562000c2c578788fd5b5062000c3b8d828e0162000ad9565b98505062000c4d8c60608d0162000acc565b965062000c5e8c60808d0162000acc565b955060a08b0151945060c08b0151935060e08b015192506101008b0151915062000c8d8c6101208d0162000acc565b90509295989b9194979a5092959850565b60006020828403121562000cb0578081fd5b815160ff8116811462000b9f578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562000d0d5762000cfa855162000d89565b8352938301939183019160010162000ce5565b505084810360408601528551808252908201925081860190845b8181101562000d4f5762000d3c835162000d89565b8552938301939183019160010162000d27565b509298975050505050505050565b602081016003831062000d6c57fe5b91905290565b90815260200190565b918252602082015260400190565b6001600160a01b031690565b6001600160a01b0381168114620009b757600080fd5b60805160a05160601c60c05160e05161010051610120516101405160601c61016051610180516101a0516101c05160601c6101e05160601c61020051610220516102405161026051610280516102a05160601c61443962000f85600039806124d352508061159c525080611538528061241f5250806107c65280610b7952806115c4528061276252806129125280612a695280612bdb5280612d775280612ece5250806109745280610b3f528061155a5280611c0d528061272e528061289752806128de52806129f35280612a355280612ba75280612d015280612d435280612e585280612e9a525080610bba5280610d895280610e76528061140952806116055280612364528061279952806129495280612aa05280612c125280612dae5280612f0552806130ea528061312252508061145c528061172052806117ec528061244552806126e352806128235280612b5d5280612c8d525080610998528061101552806116d752806117a35280611c4352806123e452806126a452806127c5528061297f5280612b1e5280612c3e5280612de45250806109155250806119cc5250806119a8525080610f365250806110cb525080611ad2525080611b14525080611af3525080610f12525080610e9c52506144396000f3fe608060405234801561001057600080fd5b50600436106102d35760003560e01c8063679aefce1161018657806395d89b41116100e3578063d505accf11610097578063de82cd3411610071578063de82cd341461056b578063f174e24114610573578063f5431aa81461057b576102d3565b8063d505accf14610532578063d5c096c414610545578063dd62ed3e14610558576102d3565b8063a457c2d7116100c8578063a457c2d714610504578063a9059cbb14610517578063aaabadc51461052a576102d3565b806395d89b41146104e95780639f11080e146104f1576102d3565b806382687a561161013a57806387ec68171161011f57806387ec6817146104c6578063893d20e8146104d95780638d928af8146104e1576102d3565b806382687a56146104ab578063851c1bb3146104b3576102d3565b806374f3b0091161016b57806374f3b0091461046f5780637ecebe00146104905780638129fc1c146104a3576102d3565b8063679aefce1461045457806370a082311461045c576102d3565b80633644e515116102345780634de046d5116101e857806355c67628116101cd57806355c67628146104155780636028bfd41461041d57806363fe3b561461043e576102d3565b80634de046d5146103ed57806350dd6ed914610402576102d3565b806338fff2d01161021957806338fff2d0146103ca57806339509351146103d25780634d64cd74146103e5576102d3565b80633644e515146103af57806338e9922e146103b7576102d3565b806318160ddd1161028b5780631dd746ea116102705780631dd746ea1461037257806323b872dd14610387578063313ce5671461039a576102d3565b806318160ddd146103535780631c0de0511461035b576102d3565b8063095ea7b3116102bc578063095ea7b31461031657806316b8d6ff1461033657806316c38b3c1461033e576102d3565b806301ec954a146102d857806306fdde0314610301575b600080fd5b6102eb6102e6366004613e6d565b610583565b6040516102f8919061418d565b60405180910390f35b6103096106f9565b6040516102f89190614345565b610329610324366004613baa565b6107ad565b6040516102f8919061416a565b6102eb6107c4565b61035161034c366004613ca1565b6107e8565b005b6102eb6107fc565b610363610802565b6040516102f893929190614175565b61037a61082b565b6040516102f89190614132565b610329610395366004613af5565b61083a565b6103a26108ce565b6040516102f8919061437f565b6102eb6108d7565b6103516103c5366004613f8c565b6108e1565b6102eb610913565b6103296103e0366004613baa565b610937565b6102eb610972565b6103f5610996565b6040516102f8919061411e565b610351610410366004613dd8565b6109ba565b6102eb6109d8565b61043061042b366004613cd9565b6109e9565b6040516102f8929190614358565b610446610a20565b6040516102f8929190614371565b6102eb610a4e565b6102eb61046a366004613aa1565b610c02565b61048261047d366004613cd9565b610c21565b6040516102f8929190614145565b6102eb61049e366004613aa1565b610c9f565b610351610cba565b6102eb610e74565b6102eb6104c1366004613d7c565b610e98565b6104306104d4366004613cd9565b610eea565b6103f5610f10565b6103f5610f34565b610309610f58565b6103516104ff366004613fbc565b610fd7565b610329610512366004613baa565b611041565b610329610525366004613baa565b61107f565b6103f561108c565b610351610540366004613b35565b611096565b610482610553366004613cd9565b6111df565b6102eb610566366004613abd565b611310565b6102eb61136b565b6103f561145a565b6102eb61147e565b600084608001516105b0610595610f34565b6001600160a01b0316336001600160a01b03161460cd6114ee565b6105c56105bb610913565b82146101f46114ee565b6105cd6114fc565b6105e76003851080156105e05750600384105b60646114ee565b60606105f1611511565b90506105fd868261163e565b600080610608610a20565b915091506106146138f8565b60405180606001604052806106276109d8565b815260208101859052604001839052905060008a51600181111561064757fe5b14156106ab5761066e8a60600151858a8151811061066157fe5b602002602001015161169f565b60608b015260006106808b8b846116ab565b905061069f81868a8151811061069257fe5b6020026020010151611772565b965050505050506106f0565b6106bf8a6060015185898151811061066157fe5b60608b015260006106d18b8b8461177e565b905061069f81868b815181106106e357fe5b6020026020010151611833565b50949350505050565b60038054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107a35780601f10610778576101008083540402835291602001916107a3565b820191906000526020600020905b81548152906001019060200180831161078657829003601f168201915b5050505050905090565b60006107ba33848461183f565b5060015b92915050565b7f000000000000000000000000000000000000000000000000000000000000000090565b6107f06118a7565b6107f9816118ed565b50565b60025490565b600080600061080f611989565b15925061081a6119a6565b91506108246119ca565b9050909192565b6060610835611511565b905090565b6000806108478533611310565b905061086b336001600160a01b03871614806108635750838210155b61019e6114ee565b6108768585856119ee565b336001600160a01b038616148015906108af57507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114155b156108c1576108c1853385840361183f565b60019150505b9392505050565b60055460ff1690565b6000610835611ace565b6000806108ec610a20565b915091506109056108fd8383611b6b565b61014f6114ee565b61090e83611c83565b505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916107ba91859061096d9086611c9c565b61183f565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b6109c26118a7565b6109ca6114fc565b6109d48282611cae565b5050565b6008546000906108359060c0611d8e565b600060606109ff86516109fa611d9c565b611da1565b610a1489898989898989611dae611e52611eb3565b97509795505050505050565b6000806000610a2d612043565b9050610a3a816000612049565b9250610a47816060612049565b9150509091565b600080610a59610913565b90506060610a65610f34565b6001600160a01b031663f94d4668836040518263ffffffff1660e01b8152600401610a90919061418d565b60006040518083038186803b158015610aa857600080fd5b505afa158015610abc573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610ae49190810190613bd5565b50915050610af981610af4611511565b61163e565b600080610b04610a20565b91509150610b106138f8565b6040518060600160405280610b236109d8565b81526020018481526020018381525090506000610baf610b76867f000000000000000000000000000000000000000000000000000000000000000081518110610b6857fe5b60200260200101518461205b565b867f000000000000000000000000000000000000000000000000000000000000000081518110610ba257fe5b60200260200101516120bc565b9050610bf7610bf0867f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b60200260200101516120c8565b82906120db565b965050505050505090565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c30610595610f34565b610c3b6105bb610913565b6060610c45611511565b9050610c51888261163e565b6000606080610c668e8e8e8e8e8e8a8f611dae565b925092509250610c768d84612132565b610c808285611e52565b610c8a8185611e52565b909550935050505b5097509795505050505050565b6001600160a01b031660009081526006602052604090205490565b6000610cc4610913565b90506060610cd0610f34565b6001600160a01b031663f94d4668836040518263ffffffff1660e01b8152600401610cfb919061418d565b60006040518083038186803b158015610d1357600080fd5b505afa158015610d27573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d4f9190810190613bd5565b505060408051600380825260808201909252919250606091906020820183803683370190505090506dffffffffffffffffffffffffffff817f000000000000000000000000000000000000000000000000000000000000000081518110610db257fe5b602002602001018181525050610dc6613919565b6040518060800160405280610dda8561213c565b8152602001838152602001604051806020016040528060008152508152602001600015158152509050610e0b610f34565b6001600160a01b031663b95cac28853030856040518563ffffffff1660e01b8152600401610e3c94939291906141b5565b600060405180830381600087803b158015610e5657600080fd5b505af1158015610e6a573d6000803e3d6000fd5b5050505050505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610ecd9291906140a8565b604051602081830303815290604052805190602001209050919050565b60006060610efb86516109fa611d9c565b610a148989898989898961213f61215d611eb3565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107a35780601f10610778576101008083540402835291602001916107a3565b610fdf6118a7565b600080610fea610a20565b91509150610ffb6108fd8383611b6b565b6110106110088585611b6b565b6101576114ee565b61103b7f000000000000000000000000000000000000000000000000000000000000000085856121be565b50505050565b60008061104e3385611310565b9050808310611068576110633385600061183f565b611075565b611075338585840361183f565b5060019392505050565b60006107ba3384846119ee565b600061083561224f565b6110a48442111560d16114ee565b6001600160a01b03871660009081526006602090815260408083205490519092916110fb917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101614297565b604051602081830303815290604052805190602001209050600061111e826122c9565b90506000600182888888604051600081526020016040526040516111459493929190614327565b6020604051602081039080840390855afa158015611167573d6000803e3d6000fd5b5050604051601f19015191506111a990506001600160a01b038216158015906111a157508b6001600160a01b0316826001600160a01b0316145b6101f86114ee565b6001600160a01b038b1660009081526006602052604090206001850190556111d28b8b8b61183f565b5050505050505050505050565b606080886111ee610595610f34565b6111f96105bb610913565b6060611203611511565b905061120d6107fc565b6112c057600060606112228d8d8d868b6122e5565b9150915061123b6112316123a6565b83101560cc6114ee565b61124d60006112486123a6565b6123ab565b6112608b6112596123a6565b84036123ab565b61126a818461215d565b80611273611d9c565b67ffffffffffffffff8111801561128957600080fd5b506040519080825280602002602001820160405280156112b3578160200160208202803683370190505b5095509550505050610c92565b6112ca888261163e565b60006060806112df8e8e8e8e8e8e8a8f61213f565b9250925092506112ef8c846123ab565b6112f9828561215d565b6113038185611e52565b9095509350610c92915050565b600061131a610f34565b6001600160a01b0316826001600160a01b0316141561135a57507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6107be565b61136483836123b5565b90506107be565b60006060611377610f34565b6001600160a01b031663f94d466861138d610913565b6040518263ffffffff1660e01b81526004016113a9919061418d565b60006040518083038186803b1580156113c157600080fd5b505afa1580156113d5573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526113fd9190810190613bd5565b509150506000611448827f00000000000000000000000000000000000000000000000000000000000000008151811061143257fe5b6020026020010151611443306123e0565b61169f565b9050611453816124ba565b9250505090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006108356124ce565b806109d481612581565b67ffffffffffffffff811b1992909216911b1790565b60006114b88383111560016114ee565b50900390565b1b90565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b816109d4576109d4816125fa565b61150f611507611989565b6101926114ee565b565b604080516003808252608082019092526060918291906020820183803683370190505090507f0000000000000000000000000000000000000000000000000000000000000000817f00000000000000000000000000000000000000000000000000000000000000008151811061158357fe5b6020026020010181815250506115c161159a6124ce565b7f000000000000000000000000000000000000000000000000000000000000000090612667565b817f0000000000000000000000000000000000000000000000000000000000000000815181106115ed57fe5b602002602001018181525050670de0b6b3a7640000817f00000000000000000000000000000000000000000000000000000000000000008151811061162e57fe5b6020908102919091010152905090565b60005b611649611d9c565b81101561090e5761168083828151811061165f57fe5b602002602001015183838151811061167357fe5b6020026020010151612667565b83828151811061168c57fe5b6020908102919091010152600101611641565b60006108c78383612667565b60208301516000906001600160a01b03163014156116d5576116ce84848461269d565b90506108c7565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031684602001516001600160a01b0316141561171e576116ce84848461281c565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031684602001516001600160a01b03161415611767576116ce848484612978565b6108c76101356125fa565b60006108c78383612acf565b60408301516000906001600160a01b03163014156117a1576116ce848484612b17565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031684604001516001600160a01b031614156117ea576116ce848484612c86565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031684604001516001600160a01b03161415611767576116ce848484612ddd565b60006108c783836120db565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259061189a90859061418d565b60405180910390a3505050565b60006118d66000357fffffffff0000000000000000000000000000000000000000000000000000000016610e98565b90506107f96118e58233612f34565b6101916114ee565b801561190d576119086118fe6119a6565b42106101936114ee565b611922565b6119226119186119ca565b42106101a96114ee565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be649061197e90839061416a565b60405180910390a150565b60006119936119ca565b42118061083557505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b611a056001600160a01b03841615156101986114ee565b611a1c6001600160a01b03831615156101996114ee565b611a2783838361090e565b6001600160a01b038316600090815260208190526040902054611a4d90826101a061301d565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a7c9082611c9c565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061189a90859061418d565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611b3b613033565b30604051602001611b509594939291906142cb565b60405160208183030381529060405280519060200120905090565b600080611b76610913565b90506060611b82610f34565b6001600160a01b031663f94d4668836040518263ffffffff1660e01b8152600401611bad919061418d565b60006040518083038186803b158015611bc557600080fd5b505afa158015611bd9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611c019190810190613bd5565b509150506000611c67827f000000000000000000000000000000000000000000000000000000000000000081518110611c3657fe5b60200260200101516114437f00000000000000000000000000000000000000000000000000000000000000006123e0565b9050858110158015611c795750848111155b9695505050505050565b611c8b6118a7565b611c936114fc565b6107f981613037565b60008282016108c784821015836114ee565b6000611cb8610913565b90506000611cc4610f34565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611cf1929190614310565b60806040518083038186803b158015611d0957600080fd5b505afa158015611d1d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d419190613fdd565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d49250610e3c9150859087906004016142f7565b1c67ffffffffffffffff1690565b600390565b6109d481831460676114ee565b60006060806000611dbe856130a2565b90506000818015611dcb57fe5b14611de057611ddb61014e6125fa565b611e43565b611de86130b8565b611df289866130cc565b9094509250611dff611d9c565b67ffffffffffffffff81118015611e1557600080fd5b50604051908082528060200260200182016040528015611e3f578160200160208202803683370190505b5091505b50985098509895505050505050565b60005b611e5d611d9c565b81101561090e57611e94838281518110611e7357fe5b6020026020010151838381518110611e8757fe5b6020026020010151612acf565b838281518110611ea057fe5b6020908102919091010152600101611e55565b333014611fa2576000306001600160a01b0316600036604051611ed79291906140d8565b6000604051808303816000865af19150503d8060008114611f14576040519150601f19603f3d011682016040523d82523d6000602084013e611f19565b606091505b505090508060008114611f2857fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611f84573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611fac611511565b9050611fb8878261163e565b60006060611fd08c8c8c8c8c8c898d8d63ffffffff16565b5091509150611fe381848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60085490565b1c6bffffffffffffffffffffffff1690565b6000816020015183101561209457815160208301516000916120809186900390612667565b905061208c84826114a8565b9150506107be565b816040015183116120a65750816107be565b8151604083015160009161208091860390612667565b60006108c78383611c9c565b6dffffffffffffffffffffffffffff0390565b60006120ea82151560046114ee565b826120f7575060006107be565b670de0b6b3a76400008381029061211a9085838161211157fe5b041460056114ee565b82600182038161212657fe5b046001019150506107be565b6109d48282613153565b90565b600060608061214f61014e6125fa565b985098509895505050505050565b60005b612168611d9c565b81101561090e5761219f83828151811061217e57fe5b602002602001015183838151811061219257fe5b60200260200101516120db565b8382815181106121ab57fe5b6020908102919091010152600101612160565b6121cd8183111561014c6114ee565b6121e86bffffffffffffffffffffffff82111561014d6114ee565b6122076121f68260606114be565b6122018460006114be565b1761320f565b826001600160a01b03167fd0e27a0d0c2cb09280fa5e4487315455b32afcdcf012dc35b6ef2a0e3c4d12808383604051612242929190614371565b60405180910390a2505050565b6000612259610f34565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561229157600080fd5b505afa1580156122a5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108359190613dbc565b60006122d3611ace565b82604051602001610ecd9291906140e8565b600060606122f16114fc565b6123086001600160a01b03871630146101566114ee565b61231f6001600160a01b03861630146101566114ee565b604080516003808252608082019092526dffffffffffffffffffffffffffff91606091906020820183803683370190505090506dffffffffffffffffffffffffffff817f00000000000000000000000000000000000000000000000000000000000000008151811061238d57fe5b6020908102919091010152909890975095505050505050565b600090565b6109d48282613224565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561244357507f0000000000000000000000000000000000000000000000000000000000000000610c1c565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561248f5761248861159a6124ce565b9050610c1c565b6001600160a01b0382163014156124af5750670de0b6b3a7640000610c1c565b610c1c6101356125fa565b60006107be826124c86107fc565b906114a8565b6000807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663d15e0053612508610996565b6040518263ffffffff1660e01b8152600401612524919061411e565b60206040518083038186803b15801561253c57600080fd5b505afa158015612550573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906125749190613fa4565b633b9aca00900492915050565b600281511015612590576107f9565b60008160008151811061259f57fe5b602002602001015190506000600190505b825181101561090e5760008382815181106125c757fe5b602002602001015190506125f0816001600160a01b0316846001600160a01b03161060656114ee565b91506001016125b0565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600082820261268b84158061268457508385838161268157fe5b04145b60036114ee565b670de0b6b3a764000090049392505050565b60006127237f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685604001516001600160a01b0316148061271b57507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685604001516001600160a01b0316145b6101356114ee565b6128148460600151847f00000000000000000000000000000000000000000000000000000000000000008151811061275757fe5b6020026020010151857f00000000000000000000000000000000000000000000000000000000000000008151811061278b57fe5b60200260200101516127c2877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b867f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168a604001516001600160a01b031614612808576132b261280c565b6133125b63ffffffff16565b949350505050565b60006128787f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685604001516001600160a01b0316148061271b575060408501516001600160a01b031630146101356114ee565b60408401516001600160a01b031630146128d3576128ce8460600151847f0000000000000000000000000000000000000000000000000000000000000000815181106128c057fe5b60200260200101518461337b565b612814565b6128148460600151847f00000000000000000000000000000000000000000000000000000000000000008151811061290757fe5b6020026020010151857f00000000000000000000000000000000000000000000000000000000000000008151811061293b57fe5b6020026020010151612972877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b866133ab565b60006129d47f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685604001516001600160a01b0316148061271b575060408501516001600160a01b031630146101356114ee565b60408401516001600160a01b03163014612a2a576128ce8460600151847f000000000000000000000000000000000000000000000000000000000000000081518110612a1c57fe5b602002602001015184613411565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000081518110612a5e57fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000081518110612a9257fe5b6020026020010151612ac9877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b86613451565b6000612ade82151560046114ee565b82612aeb575060006107be565b670de0b6b3a764000083810290612b059085838161211157fe5b828181612b0e57fe5b049150506107be565b6000612b9c7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685602001516001600160a01b0316148061271b57507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685602001516001600160a01b0316146101356114ee565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000081518110612bd057fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000081518110612c0457fe5b6020026020010151612c3b877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b867f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168a602001516001600160a01b031614612c81576134b861280c565b61350f565b6000612ce27f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685602001516001600160a01b0316148061271b575060208501516001600160a01b031630146101356114ee565b60208401516001600160a01b03163014612d38576128ce8460600151847f000000000000000000000000000000000000000000000000000000000000000081518110612d2a57fe5b602002602001015184613579565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000081518110612d6c57fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000081518110612da057fe5b6020026020010151612dd7877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b866135a3565b6000612e397f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031685602001516001600160a01b0316148061271b575060208501516001600160a01b031630146101356114ee565b60208401516001600160a01b03163014612e8f576128ce8460600151847f000000000000000000000000000000000000000000000000000000000000000081518110612e8157fe5b6020026020010151846135f2565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000081518110612ec357fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000081518110612ef757fe5b6020026020010151612f2e877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b86613627565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612f53610f10565b6001600160a01b031614158015612f6e5750612f6e8361367b565b15612f9657612f7b610f10565b6001600160a01b0316336001600160a01b03161490506107be565b612f9e61224f565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612fcd93929190614196565b60206040518083038186803b158015612fe557600080fd5b505afa158015612ff9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113649190613cbd565b600061302c84841115836114ee565b5050900390565b4690565b61304a64e8d4a5100082101560cb6114ee565b61306067016345785d8a000082111560ca6114ee565b60085461306f908260c0611492565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9061197e90839061418d565b6000818060200190518101906107be9190613e26565b61150f6130c3611989565b156101af6114ee565b6000606060006130db846136b7565b905060606131468683613120897f00000000000000000000000000000000000000000000000000000000000000008151811061311357fe5b60200260200101516124ba565b7f00000000000000000000000000000000000000000000000000000000000000006136cd565b9196919550909350505050565b61316a6001600160a01b038316151561019b6114ee565b6131768260008361090e565b6001600160a01b03821660009081526020819052604090205461319c90826101a161301d565b6001600160a01b0383166000908152602081905260409020556002546131c29082613789565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061320390859061418d565b60405180910390a35050565b60085461321e908260006114c2565b60085550565b6132306000838361090e565b60025461323d9082611c9c565b6002556001600160a01b0382166000908152602081905260409020546132639082611c9c565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061320390859061418d565b6000806132bf868461205b565b905060006132cd82876120bc565b905060006132db868a6114a8565b905060006132f6846124c86132f08587613797565b8a6137b1565b905061330288826114a8565b9450505050505b95945050505050565b60008061331f868461205b565b9050600061332d82876120bc565b9050600061334461333e838b613797565b876137e4565b9050600061335284836114a8565b905060006133608288613804565b905061336c8a826114a8565b9b9a5050505050505050505050565b600080613388848461205b565b9050600061339f6133998688611c9c565b8561205b565b9050611c7981836114a8565b6000826133c3576133bc868361205b565b9050613309565b60006133cf868461205b565b905060006133e0613399888a611c9c565b905060006133ee82846114a8565b905060006133fc84896120bc565b905061330261340b8884613797565b826137e4565b60008061341e848461205b565b9050600061342c82876114a8565b9050600061343a8286613804565b905061344686826114a8565b979650505050505050565b60008261345f575084613309565b600061346b868461205b565b9050600061347982876120bc565b90506000613487878a611c9c565b9050600061349584836120bc565b905060006134ac6134a68984613797565b856137e4565b905061336c81896114a8565b6000826134c6575084613309565b60006134d2868461205b565b905060006134e082876120bc565b905060006134ee868a611c9c565b90506000613503846124c86132f08587613797565b905061330281896114a8565b600082613520576133bc8683613804565b600061352c868461205b565b9050600061353a82876120bc565b9050600061355161354b838b613797565b876137b1565b9050600061355f8483611c9c565b9050600061356d8288613804565b905061336c818b6114a8565b600080613586848461205b565b9050600061359761339986886114a8565b9050611c7982826114a8565b6000806135b0868461205b565b905060006135c1613399888a6114a8565b905060006135cf83836114a8565b905060006135dd84896120bc565b90506133026135ec8884613797565b826137b1565b6000806135ff848461205b565b9050600061360d8287611c9c565b9050600061361b8286613804565b905061344681876114a8565b600080613634868461205b565b9050600061364282876120bc565b90506000613650878a6114a8565b9050600061365e84836120bc565b9050600061366f6134a68984613797565b905061336c88826114a8565b60006136a67f9f11080e00000000000000000000000000000000000000000000000000000000610e98565b8214806107be57506107be82613894565b6000818060200190518101906108c79190613e41565b606060006136db8585612acf565b90506060865167ffffffffffffffff811180156136f757600080fd5b50604051908082528060200260200182016040528015613721578160200160208202803683370190505b50905060005b875181101561377e578481146137765761375d8389838151811061374757fe5b602002602001015161266790919063ffffffff16565b82828151811061376957fe5b6020026020010181815250505b600101613727565b509695505050505050565b60006108c78383600161301d565b60008282026108c784158061268457508385838161268157fe5b60006137c082151560046114ee565b826137cd575060006107be565b8160018403816137d957fe5b0460010190506107be565b60006137f382151560046114ee565b8183816137fc57fe5b049392505050565b6000816020015183101561384d5781516113649061382b90670de0b6b3a764000090611c9c565b60208401518451613847916138409190612667565b8690611c9c565b90612acf565b8160400151831161385f5750816107be565b81516113649061387890670de0b6b3a7640000906114a8565b604084015184516138479161388d9190612667565b86906114a8565b60006138bf7f38e9922e00000000000000000000000000000000000000000000000000000000610e98565b8214806107be57506138f07f50dd6ed900000000000000000000000000000000000000000000000000000000610e98565b909114919050565b60405180606001604052806000815260200160008152602001600081525090565b60405180608001604052806060815260200160608152602001606081526020016000151581525090565b80356107be816143e0565b600082601f83011261395e578081fd5b813561397161396c826143b4565b61438d565b81815291506020808301908481018184028601820187101561399257600080fd5b60005b848110156139b157813584529282019290820190600101613995565b505050505092915050565b600082601f8301126139cc578081fd5b81516139da61396c826143b4565b8181529150602080830190848101818402860182018710156139fb57600080fd5b60005b848110156139b1578151845292820192908201906001016139fe565b600082601f830112613a2a578081fd5b813567ffffffffffffffff811115613a40578182fd5b613a536020601f19601f8401160161438d565b9150808252836020828501011115613a6a57600080fd5b8060208401602084013760009082016020015292915050565b8051600181106107be57600080fd5b8035600281106107be57600080fd5b600060208284031215613ab2578081fd5b81356108c7816143e0565b60008060408385031215613acf578081fd5b8235613ada816143e0565b91506020830135613aea816143e0565b809150509250929050565b600080600060608486031215613b09578081fd5b8335613b14816143e0565b92506020840135613b24816143e0565b929592945050506040919091013590565b600080600080600080600060e0888a031215613b4f578283fd5b8735613b5a816143e0565b96506020880135613b6a816143e0565b95506040880135945060608801359350608088013560ff81168114613b8d578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215613bbc578182fd5b8235613bc7816143e0565b946020939093013593505050565b600080600060608486031215613be9578081fd5b835167ffffffffffffffff80821115613c00578283fd5b818601915086601f830112613c13578283fd5b8151613c2161396c826143b4565b80828252602080830192508086018b828387028901011115613c41578788fd5b8796505b84871015613c6c578051613c58816143e0565b845260019690960195928101928101613c45565b508901519097509350505080821115613c83578283fd5b50613c90868287016139bc565b925050604084015190509250925092565b600060208284031215613cb2578081fd5b81356108c7816143f5565b600060208284031215613cce578081fd5b81516108c7816143f5565b600080600080600080600060e0888a031215613cf3578081fd5b873596506020880135613d05816143e0565b95506040880135613d15816143e0565b9450606088013567ffffffffffffffff80821115613d31578283fd5b613d3d8b838c0161394e565b955060808a0135945060a08a0135935060c08a0135915080821115613d60578283fd5b50613d6d8a828b01613a1a565b91505092959891949750929550565b600060208284031215613d8d578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146108c7578182fd5b600060208284031215613dcd578081fd5b81516108c7816143e0565b60008060408385031215613dea578182fd5b8235613df5816143e0565b9150602083013567ffffffffffffffff811115613e10578182fd5b613e1c85828601613a1a565b9150509250929050565b600060208284031215613e37578081fd5b6108c78383613a83565b60008060408385031215613e53578182fd5b613e5d8484613a83565b9150602083015190509250929050565b60008060008060808587031215613e82578182fd5b843567ffffffffffffffff80821115613e99578384fd5b818701915061012080838a031215613eaf578485fd5b613eb88161438d565b9050613ec48984613a92565b8152613ed38960208501613943565b6020820152613ee58960408501613943565b6040820152606083013560608201526080830135608082015260a083013560a0820152613f158960c08501613943565b60c0820152613f278960e08501613943565b60e08201526101008084013583811115613f3f578687fd5b613f4b8b828701613a1a565b828401525050809650506020870135915080821115613f68578384fd5b50613f758782880161394e565b949794965050505060408301359260600135919050565b600060208284031215613f9d578081fd5b5035919050565b600060208284031215613fb5578081fd5b5051919050565b60008060408385031215613fce578182fd5b50508035926020909101359150565b60008060008060808587031215613ff2578182fd5b8451935060208501519250604085015191506060850151614012816143e0565b939692955090935050565b6000815180845260208085019450808401835b8381101561404c57815187529582019590820190600101614030565b509495945050505050565b15159052565b60008151808452815b8181101561408257602081850181015186830182015201614066565b818111156140935782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6000602082526108c7602083018461401d565b600060408252614158604083018561401d565b8281036020840152613309818561401d565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156142265761421084516143d4565b82529284019260019290920191908401906141fe565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a0870152614264818561401d565b935050506040850151818584030160c0860152614281838261405d565b92505050606084015161377e60e0850182614057565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612814604083018461405d565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526108c7602083018461405d565b600083825260406020830152612814604083018461401d565b918252602082015260400190565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156143ac57600080fd5b604052919050565b600067ffffffffffffffff8211156143ca578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b03811681146107f957600080fd5b80151581146107f957600080fdfea26469706673582212202bca1f73a2ba18764d3ded74ffd81b0845838c27067b38935044e50771933f0e64736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000001a0000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de00000000000000000000000000000000000000000001bcb13a657b2638800000000000000000000000000000000000000000000000000000000009184e72a00000000000000000000000000000000000000000000000000000000000006fd9f50000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b000000000000000000000000000000000000000000000000000000000000002142616c616e636572204161766520426f6f7374656420506f6f6c2028555344432900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000962622d612d555344430000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102d35760003560e01c8063679aefce1161018657806395d89b41116100e3578063d505accf11610097578063de82cd3411610071578063de82cd341461056b578063f174e24114610573578063f5431aa81461057b576102d3565b8063d505accf14610532578063d5c096c414610545578063dd62ed3e14610558576102d3565b8063a457c2d7116100c8578063a457c2d714610504578063a9059cbb14610517578063aaabadc51461052a576102d3565b806395d89b41146104e95780639f11080e146104f1576102d3565b806382687a561161013a57806387ec68171161011f57806387ec6817146104c6578063893d20e8146104d95780638d928af8146104e1576102d3565b806382687a56146104ab578063851c1bb3146104b3576102d3565b806374f3b0091161016b57806374f3b0091461046f5780637ecebe00146104905780638129fc1c146104a3576102d3565b8063679aefce1461045457806370a082311461045c576102d3565b80633644e515116102345780634de046d5116101e857806355c67628116101cd57806355c67628146104155780636028bfd41461041d57806363fe3b561461043e576102d3565b80634de046d5146103ed57806350dd6ed914610402576102d3565b806338fff2d01161021957806338fff2d0146103ca57806339509351146103d25780634d64cd74146103e5576102d3565b80633644e515146103af57806338e9922e146103b7576102d3565b806318160ddd1161028b5780631dd746ea116102705780631dd746ea1461037257806323b872dd14610387578063313ce5671461039a576102d3565b806318160ddd146103535780631c0de0511461035b576102d3565b8063095ea7b3116102bc578063095ea7b31461031657806316b8d6ff1461033657806316c38b3c1461033e576102d3565b806301ec954a146102d857806306fdde0314610301575b600080fd5b6102eb6102e6366004613e6d565b610583565b6040516102f8919061418d565b60405180910390f35b6103096106f9565b6040516102f89190614345565b610329610324366004613baa565b6107ad565b6040516102f8919061416a565b6102eb6107c4565b61035161034c366004613ca1565b6107e8565b005b6102eb6107fc565b610363610802565b6040516102f893929190614175565b61037a61082b565b6040516102f89190614132565b610329610395366004613af5565b61083a565b6103a26108ce565b6040516102f8919061437f565b6102eb6108d7565b6103516103c5366004613f8c565b6108e1565b6102eb610913565b6103296103e0366004613baa565b610937565b6102eb610972565b6103f5610996565b6040516102f8919061411e565b610351610410366004613dd8565b6109ba565b6102eb6109d8565b61043061042b366004613cd9565b6109e9565b6040516102f8929190614358565b610446610a20565b6040516102f8929190614371565b6102eb610a4e565b6102eb61046a366004613aa1565b610c02565b61048261047d366004613cd9565b610c21565b6040516102f8929190614145565b6102eb61049e366004613aa1565b610c9f565b610351610cba565b6102eb610e74565b6102eb6104c1366004613d7c565b610e98565b6104306104d4366004613cd9565b610eea565b6103f5610f10565b6103f5610f34565b610309610f58565b6103516104ff366004613fbc565b610fd7565b610329610512366004613baa565b611041565b610329610525366004613baa565b61107f565b6103f561108c565b610351610540366004613b35565b611096565b610482610553366004613cd9565b6111df565b6102eb610566366004613abd565b611310565b6102eb61136b565b6103f561145a565b6102eb61147e565b600084608001516105b0610595610f34565b6001600160a01b0316336001600160a01b03161460cd6114ee565b6105c56105bb610913565b82146101f46114ee565b6105cd6114fc565b6105e76003851080156105e05750600384105b60646114ee565b60606105f1611511565b90506105fd868261163e565b600080610608610a20565b915091506106146138f8565b60405180606001604052806106276109d8565b815260208101859052604001839052905060008a51600181111561064757fe5b14156106ab5761066e8a60600151858a8151811061066157fe5b602002602001015161169f565b60608b015260006106808b8b846116ab565b905061069f81868a8151811061069257fe5b6020026020010151611772565b965050505050506106f0565b6106bf8a6060015185898151811061066157fe5b60608b015260006106d18b8b8461177e565b905061069f81868b815181106106e357fe5b6020026020010151611833565b50949350505050565b60038054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107a35780601f10610778576101008083540402835291602001916107a3565b820191906000526020600020905b81548152906001019060200180831161078657829003601f168201915b5050505050905090565b60006107ba33848461183f565b5060015b92915050565b7f000000000000000000000000000000000000000000000000000000000000000290565b6107f06118a7565b6107f9816118ed565b50565b60025490565b600080600061080f611989565b15925061081a6119a6565b91506108246119ca565b9050909192565b6060610835611511565b905090565b6000806108478533611310565b905061086b336001600160a01b03871614806108635750838210155b61019e6114ee565b6108768585856119ee565b336001600160a01b038616148015906108af57507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114155b156108c1576108c1853385840361183f565b60019150505b9392505050565b60055460ff1690565b6000610835611ace565b6000806108ec610a20565b915091506109056108fd8383611b6b565b61014f6114ee565b61090e83611c83565b505050565b7f9210f1204b5a24742eba12f710636d76240df3d00000000000000000000000fc90565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916107ba91859061096d9086611c9c565b61183f565b7f000000000000000000000000000000000000000000000000000000000000000190565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4890565b6109c26118a7565b6109ca6114fc565b6109d48282611cae565b5050565b6008546000906108359060c0611d8e565b600060606109ff86516109fa611d9c565b611da1565b610a1489898989898989611dae611e52611eb3565b97509795505050505050565b6000806000610a2d612043565b9050610a3a816000612049565b9250610a47816060612049565b9150509091565b600080610a59610913565b90506060610a65610f34565b6001600160a01b031663f94d4668836040518263ffffffff1660e01b8152600401610a90919061418d565b60006040518083038186803b158015610aa857600080fd5b505afa158015610abc573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610ae49190810190613bd5565b50915050610af981610af4611511565b61163e565b600080610b04610a20565b91509150610b106138f8565b6040518060600160405280610b236109d8565b81526020018481526020018381525090506000610baf610b76867f000000000000000000000000000000000000000000000000000000000000000181518110610b6857fe5b60200260200101518461205b565b867f000000000000000000000000000000000000000000000000000000000000000281518110610ba257fe5b60200260200101516120bc565b9050610bf7610bf0867f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b60200260200101516120c8565b82906120db565b965050505050505090565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c30610595610f34565b610c3b6105bb610913565b6060610c45611511565b9050610c51888261163e565b6000606080610c668e8e8e8e8e8e8a8f611dae565b925092509250610c768d84612132565b610c808285611e52565b610c8a8185611e52565b909550935050505b5097509795505050505050565b6001600160a01b031660009081526006602052604090205490565b6000610cc4610913565b90506060610cd0610f34565b6001600160a01b031663f94d4668836040518263ffffffff1660e01b8152600401610cfb919061418d565b60006040518083038186803b158015610d1357600080fd5b505afa158015610d27573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d4f9190810190613bd5565b505060408051600380825260808201909252919250606091906020820183803683370190505090506dffffffffffffffffffffffffffff817f000000000000000000000000000000000000000000000000000000000000000081518110610db257fe5b602002602001018181525050610dc6613919565b6040518060800160405280610dda8561213c565b8152602001838152602001604051806020016040528060008152508152602001600015158152509050610e0b610f34565b6001600160a01b031663b95cac28853030856040518563ffffffff1660e01b8152600401610e3c94939291906141b5565b600060405180830381600087803b158015610e5657600080fd5b505af1158015610e6a573d6000803e3d6000fd5b5050505050505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b60007f000000000000000000000000d7fad3bd59d6477cbe1be7f646f7f1ba25b230f882604051602001610ecd9291906140a8565b604051602081830303815290604052805190602001209050919050565b60006060610efb86516109fa611d9c565b610a148989898989898961213f61215d611eb3565b7f000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b90565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b60048054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107a35780601f10610778576101008083540402835291602001916107a3565b610fdf6118a7565b600080610fea610a20565b91509150610ffb6108fd8383611b6b565b6110106110088585611b6b565b6101576114ee565b61103b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4885856121be565b50505050565b60008061104e3385611310565b9050808310611068576110633385600061183f565b611075565b611075338585840361183f565b5060019392505050565b60006107ba3384846119ee565b600061083561224f565b6110a48442111560d16114ee565b6001600160a01b03871660009081526006602090815260408083205490519092916110fb917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101614297565b604051602081830303815290604052805190602001209050600061111e826122c9565b90506000600182888888604051600081526020016040526040516111459493929190614327565b6020604051602081039080840390855afa158015611167573d6000803e3d6000fd5b5050604051601f19015191506111a990506001600160a01b038216158015906111a157508b6001600160a01b0316826001600160a01b0316145b6101f86114ee565b6001600160a01b038b1660009081526006602052604090206001850190556111d28b8b8b61183f565b5050505050505050505050565b606080886111ee610595610f34565b6111f96105bb610913565b6060611203611511565b905061120d6107fc565b6112c057600060606112228d8d8d868b6122e5565b9150915061123b6112316123a6565b83101560cc6114ee565b61124d60006112486123a6565b6123ab565b6112608b6112596123a6565b84036123ab565b61126a818461215d565b80611273611d9c565b67ffffffffffffffff8111801561128957600080fd5b506040519080825280602002602001820160405280156112b3578160200160208202803683370190505b5095509550505050610c92565b6112ca888261163e565b60006060806112df8e8e8e8e8e8e8a8f61213f565b9250925092506112ef8c846123ab565b6112f9828561215d565b6113038185611e52565b9095509350610c92915050565b600061131a610f34565b6001600160a01b0316826001600160a01b0316141561135a57507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6107be565b61136483836123b5565b90506107be565b60006060611377610f34565b6001600160a01b031663f94d466861138d610913565b6040518263ffffffff1660e01b81526004016113a9919061418d565b60006040518083038186803b1580156113c157600080fd5b505afa1580156113d5573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526113fd9190810190613bd5565b509150506000611448827f00000000000000000000000000000000000000000000000000000000000000008151811061143257fe5b6020026020010151611443306123e0565b61169f565b9050611453816124ba565b9250505090565b7f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de90565b60006108356124ce565b806109d481612581565b67ffffffffffffffff811b1992909216911b1790565b60006114b88383111560016114ee565b50900390565b1b90565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b816109d4576109d4816125fa565b61150f611507611989565b6101926114ee565b565b604080516003808252608082019092526060918291906020820183803683370190505090507f000000000000000000000000000000000000000c9f2c9cd04674edea40000000817f00000000000000000000000000000000000000000000000000000000000000018151811061158357fe5b6020026020010181815250506115c161159a6124ce565b7f000000000000000000000000000000000000000c9f2c9cd04674edea4000000090612667565b817f0000000000000000000000000000000000000000000000000000000000000002815181106115ed57fe5b602002602001018181525050670de0b6b3a7640000817f00000000000000000000000000000000000000000000000000000000000000008151811061162e57fe5b6020908102919091010152905090565b60005b611649611d9c565b81101561090e5761168083828151811061165f57fe5b602002602001015183838151811061167357fe5b6020026020010151612667565b83828151811061168c57fe5b6020908102919091010152600101611641565b60006108c78383612667565b60208301516000906001600160a01b03163014156116d5576116ce84848461269d565b90506108c7565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b031684602001516001600160a01b0316141561171e576116ce84848461281c565b7f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de6001600160a01b031684602001516001600160a01b03161415611767576116ce848484612978565b6108c76101356125fa565b60006108c78383612acf565b60408301516000906001600160a01b03163014156117a1576116ce848484612b17565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b031684604001516001600160a01b031614156117ea576116ce848484612c86565b7f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de6001600160a01b031684604001516001600160a01b03161415611767576116ce848484612ddd565b60006108c783836120db565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259061189a90859061418d565b60405180910390a3505050565b60006118d66000357fffffffff0000000000000000000000000000000000000000000000000000000016610e98565b90506107f96118e58233612f34565b6101916114ee565b801561190d576119086118fe6119a6565b42106101936114ee565b611922565b6119226119186119ca565b42106101a96114ee565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be649061197e90839061416a565b60405180910390a150565b60006119936119ca565b42118061083557505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000006227a4a490565b7f00000000000000000000000000000000000000000000000000000000624f31a490565b611a056001600160a01b03841615156101986114ee565b611a1c6001600160a01b03831615156101996114ee565b611a2783838361090e565b6001600160a01b038316600090815260208190526040902054611a4d90826101a061301d565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a7c9082611c9c565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061189a90859061418d565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f554e4967687954f8ee3fa5e4dc82b06eefc1547a9ee4a5735bf276b933eca14f7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6611b3b613033565b30604051602001611b509594939291906142cb565b60405160208183030381529060405280519060200120905090565b600080611b76610913565b90506060611b82610f34565b6001600160a01b031663f94d4668836040518263ffffffff1660e01b8152600401611bad919061418d565b60006040518083038186803b158015611bc557600080fd5b505afa158015611bd9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611c019190810190613bd5565b509150506000611c67827f000000000000000000000000000000000000000000000000000000000000000181518110611c3657fe5b60200260200101516114437f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486123e0565b9050858110158015611c795750848111155b9695505050505050565b611c8b6118a7565b611c936114fc565b6107f981613037565b60008282016108c784821015836114ee565b6000611cb8610913565b90506000611cc4610f34565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611cf1929190614310565b60806040518083038186803b158015611d0957600080fd5b505afa158015611d1d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d419190613fdd565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d49250610e3c9150859087906004016142f7565b1c67ffffffffffffffff1690565b600390565b6109d481831460676114ee565b60006060806000611dbe856130a2565b90506000818015611dcb57fe5b14611de057611ddb61014e6125fa565b611e43565b611de86130b8565b611df289866130cc565b9094509250611dff611d9c565b67ffffffffffffffff81118015611e1557600080fd5b50604051908082528060200260200182016040528015611e3f578160200160208202803683370190505b5091505b50985098509895505050505050565b60005b611e5d611d9c565b81101561090e57611e94838281518110611e7357fe5b6020026020010151838381518110611e8757fe5b6020026020010151612acf565b838281518110611ea057fe5b6020908102919091010152600101611e55565b333014611fa2576000306001600160a01b0316600036604051611ed79291906140d8565b6000604051808303816000865af19150503d8060008114611f14576040519150601f19603f3d011682016040523d82523d6000602084013e611f19565b606091505b505090508060008114611f2857fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611f84573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611fac611511565b9050611fb8878261163e565b60006060611fd08c8c8c8c8c8c898d8d63ffffffff16565b5091509150611fe381848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60085490565b1c6bffffffffffffffffffffffff1690565b6000816020015183101561209457815160208301516000916120809186900390612667565b905061208c84826114a8565b9150506107be565b816040015183116120a65750816107be565b8151604083015160009161208091860390612667565b60006108c78383611c9c565b6dffffffffffffffffffffffffffff0390565b60006120ea82151560046114ee565b826120f7575060006107be565b670de0b6b3a76400008381029061211a9085838161211157fe5b041460056114ee565b82600182038161212657fe5b046001019150506107be565b6109d48282613153565b90565b600060608061214f61014e6125fa565b985098509895505050505050565b60005b612168611d9c565b81101561090e5761219f83828151811061217e57fe5b602002602001015183838151811061219257fe5b60200260200101516120db565b8382815181106121ab57fe5b6020908102919091010152600101612160565b6121cd8183111561014c6114ee565b6121e86bffffffffffffffffffffffff82111561014d6114ee565b6122076121f68260606114be565b6122018460006114be565b1761320f565b826001600160a01b03167fd0e27a0d0c2cb09280fa5e4487315455b32afcdcf012dc35b6ef2a0e3c4d12808383604051612242929190614371565b60405180910390a2505050565b6000612259610f34565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561229157600080fd5b505afa1580156122a5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108359190613dbc565b60006122d3611ace565b82604051602001610ecd9291906140e8565b600060606122f16114fc565b6123086001600160a01b03871630146101566114ee565b61231f6001600160a01b03861630146101566114ee565b604080516003808252608082019092526dffffffffffffffffffffffffffff91606091906020820183803683370190505090506dffffffffffffffffffffffffffff817f00000000000000000000000000000000000000000000000000000000000000008151811061238d57fe5b6020908102919091010152909890975095505050505050565b600090565b6109d48282613224565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60007f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b0316826001600160a01b0316141561244357507f000000000000000000000000000000000000000c9f2c9cd04674edea40000000610c1c565b7f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de6001600160a01b0316826001600160a01b0316141561248f5761248861159a6124ce565b9050610c1c565b6001600160a01b0382163014156124af5750670de0b6b3a7640000610c1c565b610c1c6101356125fa565b60006107be826124c86107fc565b906114a8565b6000807f0000000000000000000000007d2768de32b0b80b7a3454c06bdac94a69ddc7a96001600160a01b031663d15e0053612508610996565b6040518263ffffffff1660e01b8152600401612524919061411e565b60206040518083038186803b15801561253c57600080fd5b505afa158015612550573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906125749190613fa4565b633b9aca00900492915050565b600281511015612590576107f9565b60008160008151811061259f57fe5b602002602001015190506000600190505b825181101561090e5760008382815181106125c757fe5b602002602001015190506125f0816001600160a01b0316846001600160a01b03161060656114ee565b91506001016125b0565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600082820261268b84158061268457508385838161268157fe5b04145b60036114ee565b670de0b6b3a764000090049392505050565b60006127237f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b031685604001516001600160a01b0316148061271b57507f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de6001600160a01b031685604001516001600160a01b0316145b6101356114ee565b6128148460600151847f00000000000000000000000000000000000000000000000000000000000000018151811061275757fe5b6020026020010151857f00000000000000000000000000000000000000000000000000000000000000028151811061278b57fe5b60200260200101516127c2877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b867f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b03168a604001516001600160a01b031614612808576132b261280c565b6133125b63ffffffff16565b949350505050565b60006128787f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de6001600160a01b031685604001516001600160a01b0316148061271b575060408501516001600160a01b031630146101356114ee565b60408401516001600160a01b031630146128d3576128ce8460600151847f0000000000000000000000000000000000000000000000000000000000000001815181106128c057fe5b60200260200101518461337b565b612814565b6128148460600151847f00000000000000000000000000000000000000000000000000000000000000018151811061290757fe5b6020026020010151857f00000000000000000000000000000000000000000000000000000000000000028151811061293b57fe5b6020026020010151612972877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b866133ab565b60006129d47f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b031685604001516001600160a01b0316148061271b575060408501516001600160a01b031630146101356114ee565b60408401516001600160a01b03163014612a2a576128ce8460600151847f000000000000000000000000000000000000000000000000000000000000000181518110612a1c57fe5b602002602001015184613411565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000181518110612a5e57fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000281518110612a9257fe5b6020026020010151612ac9877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b86613451565b6000612ade82151560046114ee565b82612aeb575060006107be565b670de0b6b3a764000083810290612b059085838161211157fe5b828181612b0e57fe5b049150506107be565b6000612b9c7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b031685602001516001600160a01b0316148061271b57507f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de6001600160a01b031685602001516001600160a01b0316146101356114ee565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000181518110612bd057fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000281518110612c0457fe5b6020026020010151612c3b877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b867f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b03168a602001516001600160a01b031614612c81576134b861280c565b61350f565b6000612ce27f000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de6001600160a01b031685602001516001600160a01b0316148061271b575060208501516001600160a01b031630146101356114ee565b60208401516001600160a01b03163014612d38576128ce8460600151847f000000000000000000000000000000000000000000000000000000000000000181518110612d2a57fe5b602002602001015184613579565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000181518110612d6c57fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000281518110612da057fe5b6020026020010151612dd7877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b866135a3565b6000612e397f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b031685602001516001600160a01b0316148061271b575060208501516001600160a01b031630146101356114ee565b60208401516001600160a01b03163014612e8f576128ce8460600151847f000000000000000000000000000000000000000000000000000000000000000181518110612e8157fe5b6020026020010151846135f2565b6128148460600151847f000000000000000000000000000000000000000000000000000000000000000181518110612ec357fe5b6020026020010151857f000000000000000000000000000000000000000000000000000000000000000281518110612ef757fe5b6020026020010151612f2e877f000000000000000000000000000000000000000000000000000000000000000081518110610be357fe5b86613627565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612f53610f10565b6001600160a01b031614158015612f6e5750612f6e8361367b565b15612f9657612f7b610f10565b6001600160a01b0316336001600160a01b03161490506107be565b612f9e61224f565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612fcd93929190614196565b60206040518083038186803b158015612fe557600080fd5b505afa158015612ff9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113649190613cbd565b600061302c84841115836114ee565b5050900390565b4690565b61304a64e8d4a5100082101560cb6114ee565b61306067016345785d8a000082111560ca6114ee565b60085461306f908260c0611492565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9061197e90839061418d565b6000818060200190518101906107be9190613e26565b61150f6130c3611989565b156101af6114ee565b6000606060006130db846136b7565b905060606131468683613120897f00000000000000000000000000000000000000000000000000000000000000008151811061311357fe5b60200260200101516124ba565b7f00000000000000000000000000000000000000000000000000000000000000006136cd565b9196919550909350505050565b61316a6001600160a01b038316151561019b6114ee565b6131768260008361090e565b6001600160a01b03821660009081526020819052604090205461319c90826101a161301d565b6001600160a01b0383166000908152602081905260409020556002546131c29082613789565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061320390859061418d565b60405180910390a35050565b60085461321e908260006114c2565b60085550565b6132306000838361090e565b60025461323d9082611c9c565b6002556001600160a01b0382166000908152602081905260409020546132639082611c9c565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061320390859061418d565b6000806132bf868461205b565b905060006132cd82876120bc565b905060006132db868a6114a8565b905060006132f6846124c86132f08587613797565b8a6137b1565b905061330288826114a8565b9450505050505b95945050505050565b60008061331f868461205b565b9050600061332d82876120bc565b9050600061334461333e838b613797565b876137e4565b9050600061335284836114a8565b905060006133608288613804565b905061336c8a826114a8565b9b9a5050505050505050505050565b600080613388848461205b565b9050600061339f6133998688611c9c565b8561205b565b9050611c7981836114a8565b6000826133c3576133bc868361205b565b9050613309565b60006133cf868461205b565b905060006133e0613399888a611c9c565b905060006133ee82846114a8565b905060006133fc84896120bc565b905061330261340b8884613797565b826137e4565b60008061341e848461205b565b9050600061342c82876114a8565b9050600061343a8286613804565b905061344686826114a8565b979650505050505050565b60008261345f575084613309565b600061346b868461205b565b9050600061347982876120bc565b90506000613487878a611c9c565b9050600061349584836120bc565b905060006134ac6134a68984613797565b856137e4565b905061336c81896114a8565b6000826134c6575084613309565b60006134d2868461205b565b905060006134e082876120bc565b905060006134ee868a611c9c565b90506000613503846124c86132f08587613797565b905061330281896114a8565b600082613520576133bc8683613804565b600061352c868461205b565b9050600061353a82876120bc565b9050600061355161354b838b613797565b876137b1565b9050600061355f8483611c9c565b9050600061356d8288613804565b905061336c818b6114a8565b600080613586848461205b565b9050600061359761339986886114a8565b9050611c7982826114a8565b6000806135b0868461205b565b905060006135c1613399888a6114a8565b905060006135cf83836114a8565b905060006135dd84896120bc565b90506133026135ec8884613797565b826137b1565b6000806135ff848461205b565b9050600061360d8287611c9c565b9050600061361b8286613804565b905061344681876114a8565b600080613634868461205b565b9050600061364282876120bc565b90506000613650878a6114a8565b9050600061365e84836120bc565b9050600061366f6134a68984613797565b905061336c88826114a8565b60006136a67f9f11080e00000000000000000000000000000000000000000000000000000000610e98565b8214806107be57506107be82613894565b6000818060200190518101906108c79190613e41565b606060006136db8585612acf565b90506060865167ffffffffffffffff811180156136f757600080fd5b50604051908082528060200260200182016040528015613721578160200160208202803683370190505b50905060005b875181101561377e578481146137765761375d8389838151811061374757fe5b602002602001015161266790919063ffffffff16565b82828151811061376957fe5b6020026020010181815250505b600101613727565b509695505050505050565b60006108c78383600161301d565b60008282026108c784158061268457508385838161268157fe5b60006137c082151560046114ee565b826137cd575060006107be565b8160018403816137d957fe5b0460010190506107be565b60006137f382151560046114ee565b8183816137fc57fe5b049392505050565b6000816020015183101561384d5781516113649061382b90670de0b6b3a764000090611c9c565b60208401518451613847916138409190612667565b8690611c9c565b90612acf565b8160400151831161385f5750816107be565b81516113649061387890670de0b6b3a7640000906114a8565b604084015184516138479161388d9190612667565b86906114a8565b60006138bf7f38e9922e00000000000000000000000000000000000000000000000000000000610e98565b8214806107be57506138f07f50dd6ed900000000000000000000000000000000000000000000000000000000610e98565b909114919050565b60405180606001604052806000815260200160008152602001600081525090565b60405180608001604052806060815260200160608152602001606081526020016000151581525090565b80356107be816143e0565b600082601f83011261395e578081fd5b813561397161396c826143b4565b61438d565b81815291506020808301908481018184028601820187101561399257600080fd5b60005b848110156139b157813584529282019290820190600101613995565b505050505092915050565b600082601f8301126139cc578081fd5b81516139da61396c826143b4565b8181529150602080830190848101818402860182018710156139fb57600080fd5b60005b848110156139b1578151845292820192908201906001016139fe565b600082601f830112613a2a578081fd5b813567ffffffffffffffff811115613a40578182fd5b613a536020601f19601f8401160161438d565b9150808252836020828501011115613a6a57600080fd5b8060208401602084013760009082016020015292915050565b8051600181106107be57600080fd5b8035600281106107be57600080fd5b600060208284031215613ab2578081fd5b81356108c7816143e0565b60008060408385031215613acf578081fd5b8235613ada816143e0565b91506020830135613aea816143e0565b809150509250929050565b600080600060608486031215613b09578081fd5b8335613b14816143e0565b92506020840135613b24816143e0565b929592945050506040919091013590565b600080600080600080600060e0888a031215613b4f578283fd5b8735613b5a816143e0565b96506020880135613b6a816143e0565b95506040880135945060608801359350608088013560ff81168114613b8d578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215613bbc578182fd5b8235613bc7816143e0565b946020939093013593505050565b600080600060608486031215613be9578081fd5b835167ffffffffffffffff80821115613c00578283fd5b818601915086601f830112613c13578283fd5b8151613c2161396c826143b4565b80828252602080830192508086018b828387028901011115613c41578788fd5b8796505b84871015613c6c578051613c58816143e0565b845260019690960195928101928101613c45565b508901519097509350505080821115613c83578283fd5b50613c90868287016139bc565b925050604084015190509250925092565b600060208284031215613cb2578081fd5b81356108c7816143f5565b600060208284031215613cce578081fd5b81516108c7816143f5565b600080600080600080600060e0888a031215613cf3578081fd5b873596506020880135613d05816143e0565b95506040880135613d15816143e0565b9450606088013567ffffffffffffffff80821115613d31578283fd5b613d3d8b838c0161394e565b955060808a0135945060a08a0135935060c08a0135915080821115613d60578283fd5b50613d6d8a828b01613a1a565b91505092959891949750929550565b600060208284031215613d8d578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146108c7578182fd5b600060208284031215613dcd578081fd5b81516108c7816143e0565b60008060408385031215613dea578182fd5b8235613df5816143e0565b9150602083013567ffffffffffffffff811115613e10578182fd5b613e1c85828601613a1a565b9150509250929050565b600060208284031215613e37578081fd5b6108c78383613a83565b60008060408385031215613e53578182fd5b613e5d8484613a83565b9150602083015190509250929050565b60008060008060808587031215613e82578182fd5b843567ffffffffffffffff80821115613e99578384fd5b818701915061012080838a031215613eaf578485fd5b613eb88161438d565b9050613ec48984613a92565b8152613ed38960208501613943565b6020820152613ee58960408501613943565b6040820152606083013560608201526080830135608082015260a083013560a0820152613f158960c08501613943565b60c0820152613f278960e08501613943565b60e08201526101008084013583811115613f3f578687fd5b613f4b8b828701613a1a565b828401525050809650506020870135915080821115613f68578384fd5b50613f758782880161394e565b949794965050505060408301359260600135919050565b600060208284031215613f9d578081fd5b5035919050565b600060208284031215613fb5578081fd5b5051919050565b60008060408385031215613fce578182fd5b50508035926020909101359150565b60008060008060808587031215613ff2578182fd5b8451935060208501519250604085015191506060850151614012816143e0565b939692955090935050565b6000815180845260208085019450808401835b8381101561404c57815187529582019590820190600101614030565b509495945050505050565b15159052565b60008151808452815b8181101561408257602081850181015186830182015201614066565b818111156140935782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6000602082526108c7602083018461401d565b600060408252614158604083018561401d565b8281036020840152613309818561401d565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156142265761421084516143d4565b82529284019260019290920191908401906141fe565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a0870152614264818561401d565b935050506040850151818584030160c0860152614281838261405d565b92505050606084015161377e60e0850182614057565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612814604083018461405d565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526108c7602083018461405d565b600083825260406020830152612814604083018461401d565b918252602082015260400190565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156143ac57600080fd5b604052919050565b600067ffffffffffffffff8211156143ca578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b03811681146107f957600080fd5b80151581146107f957600080fdfea26469706673582212202bca1f73a2ba18764d3ded74ffd81b0845838c27067b38935044e50771933f0e64736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000001a0000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de00000000000000000000000000000000000000000001bcb13a657b2638800000000000000000000000000000000000000000000000000000000009184e72a00000000000000000000000000000000000000000000000000000000000006fd9f50000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b000000000000000000000000000000000000000000000000000000000000002142616c616e636572204161766520426f6f7374656420506f6f6c2028555344432900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000962622d612d555344430000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
Arg [1] : name (string): Balancer Aave Boosted Pool (USDC)
Arg [2] : symbol (string): bb-a-USDC
Arg [3] : mainToken (address): 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
Arg [4] : wrappedToken (address): 0xd093fA4Fb80D09bB30817FDcd442d4d02eD3E5de
Arg [5] : upperTarget (uint256): 2100000000000000000000000
Arg [6] : swapFeePercentage (uint256): 10000000000000
Arg [7] : pauseWindowDuration (uint256): 7330293
Arg [8] : bufferPeriodDuration (uint256): 2592000
Arg [9] : owner (address): 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B
-----Encoded View---------------
15 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [2] : 00000000000000000000000000000000000000000000000000000000000001a0
Arg [3] : 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Arg [4] : 000000000000000000000000d093fa4fb80d09bb30817fdcd442d4d02ed3e5de
Arg [5] : 00000000000000000000000000000000000000000001bcb13a657b2638800000
Arg [6] : 000000000000000000000000000000000000000000000000000009184e72a000
Arg [7] : 00000000000000000000000000000000000000000000000000000000006fd9f5
Arg [8] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [9] : 000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000021
Arg [11] : 42616c616e636572204161766520426f6f7374656420506f6f6c202855534443
Arg [12] : 2900000000000000000000000000000000000000000000000000000000000000
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000009
Arg [14] : 62622d612d555344430000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.