ERC-20
Overview
Max Total Supply
1,743.772685863782457082 ERC20 ***
Holders
31
Transfers
-
0
Market
Onchain Market Cap
-
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
| # | Exchange | Pair | Price | 24H Volume | % Volume |
|---|
Minimal Proxy Contract for 0x847ee1227a9900b73aeeb3a47fac92c52fd54ed9
Contract Name:
Vyper_contract
Compiler Version
vyper:0.3.7
Contract Source Code (Vyper language format)
# @version 0.3.7
"""
@title StableSwap
@author Curve.Fi
@license Copyright (c) Curve.Fi, 2020-2023 - all rights reserved
@notice 2 coin pool implementation with no lending
@dev ERC20 support for return True/revert, return True/False, return None
Uses native Ether as coins[0] and can rebase ERC20
"""
from vyper.interfaces import ERC20
interface Factory:
def convert_fees() -> bool: nonpayable
def get_fee_receiver(_pool: address) -> address: view
def admin() -> address: view
interface ERC1271:
def isValidSignature(_hash: bytes32, _signature: Bytes[65]) -> bytes32: view
event Transfer:
sender: indexed(address)
receiver: indexed(address)
value: uint256
event Approval:
owner: indexed(address)
spender: indexed(address)
value: uint256
event TokenExchange:
buyer: indexed(address)
sold_id: int128
tokens_sold: uint256
bought_id: int128
tokens_bought: uint256
event AddLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fees: uint256[N_COINS]
invariant: uint256
token_supply: uint256
event RemoveLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fees: uint256[N_COINS]
token_supply: uint256
event RemoveLiquidityOne:
provider: indexed(address)
token_amount: uint256
coin_amount: uint256
token_supply: uint256
event RemoveLiquidityImbalance:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fees: uint256[N_COINS]
invariant: uint256
token_supply: uint256
event RampA:
old_A: uint256
new_A: uint256
initial_time: uint256
future_time: uint256
event StopRampA:
A: uint256
t: uint256
event CommitNewFee:
new_fee: uint256
event ApplyNewFee:
fee: uint256
N_COINS_128: constant(int128) = 2
N_COINS: constant(uint256) = 2
PRECISION: constant(uint256) = 10 ** 18
ADMIN_ACTIONS_DEADLINE_DT: constant(uint256) = 86400 * 3
FEE_DENOMINATOR: constant(uint256) = 10 ** 10
ADMIN_FEE: constant(uint256) = 5000000000
A_PRECISION: constant(uint256) = 100
MAX_FEE: constant(uint256) = 5 * 10 ** 9
MAX_A: constant(uint256) = 10 ** 6
MAX_A_CHANGE: constant(uint256) = 10
MIN_RAMP_TIME: constant(uint256) = 86400
ETH_ADDR: constant(address) = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE
EIP712_TYPEHASH: constant(bytes32) = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
PERMIT_TYPEHASH: constant(bytes32) = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
# keccak256("isValidSignature(bytes32,bytes)")[:4] << 224
ERC1271_MAGIC_VAL: constant(bytes32) = 0x1626ba7e00000000000000000000000000000000000000000000000000000000
version: public(constant(String[8])) = "v6.0.1"
factory: address
coins: public(address[N_COINS])
admin_balances: public(uint256[N_COINS])
fee: public(uint256) # fee * 1e10
future_fee: public(uint256)
admin_action_deadline: public(uint256)
initial_A: public(uint256)
future_A: public(uint256)
initial_A_time: public(uint256)
future_A_time: public(uint256)
# [bytes4 method_id][bytes8 <empty>][bytes20 oracle]
oracle_method: public(uint256) # Only for one coin which is not ETH
originator: address # Creator of the pool who can set the oracle method
RATE_MULTIPLIERS: constant(uint256[2]) = [10**18, 10**18]
# shift(2**32 - 1, 224)
ORACLE_BIT_MASK: constant(uint256) = (2**32 - 1) * 256**28
name: public(String[64])
symbol: public(String[32])
balanceOf: public(HashMap[address, uint256])
allowance: public(HashMap[address, HashMap[address, uint256]])
totalSupply: public(uint256)
decimals: public(constant(uint256)) = 18
DOMAIN_SEPARATOR: public(bytes32)
nonces: public(HashMap[address, uint256])
last_prices_packed: uint256 # [last_price, ma_price]
ma_exp_time: public(uint256)
ma_last_time: public(uint256)
@external
def __init__():
# we do this to prevent the implementation contract from being used as a pool
self.factory = 0x0000000000000000000000000000000000000001
assert N_COINS == 2
@external
def initialize(
_name: String[32],
_symbol: String[10],
_coins: address[4],
_rate_multipliers: uint256[4],
_A: uint256,
_fee: uint256,
):
"""
@notice Contract constructor
@param _name Name of the new pool
@param _symbol Token symbol
@param _coins List of all ERC20 conract addresses of coins
@param _rate_multipliers List of number of decimals in coins
@param _A Amplification coefficient multiplied by n ** (n - 1)
@param _fee Fee to charge for exchanges
"""
# check if factory was already set to prevent initializing contract twice
assert self.factory == empty(address)
# tx.origin will have the ability to set oracles for coins
self.originator = tx.origin
# additional sanity checks for ETH configuration
assert _coins[0] == ETH_ADDR
for i in range(N_COINS):
assert _rate_multipliers[i] == 10**18
self.coins[i] = _coins[i]
A: uint256 = _A * A_PRECISION
self.initial_A = A
self.future_A = A
self.fee = _fee
self.factory = msg.sender
self.ma_exp_time = 866 # = 600 / ln(2)
self.last_prices_packed = self.pack_prices(10**18, 10**18)
self.ma_last_time = block.timestamp
name: String[64] = concat("Curve.fi Factory Pool: ", _name)
self.name = name
self.symbol = concat(_symbol, "-f")
self.DOMAIN_SEPARATOR = keccak256(
_abi_encode(EIP712_TYPEHASH, keccak256(name), keccak256(version), chain.id, self)
)
# fire a transfer event so block explorers identify the contract as an ERC20
log Transfer(empty(address), self, 0)
### ERC20 Functionality ###
@internal
def _transfer(_from: address, _to: address, _value: uint256):
# # NOTE: vyper does not allow underflows
# # so the following subtraction would revert on insufficient balance
self.balanceOf[_from] -= _value
self.balanceOf[_to] += _value
log Transfer(_from, _to, _value)
@external
def transfer(_to : address, _value : uint256) -> bool:
"""
@dev Transfer token for a specified address
@param _to The address to transfer to.
@param _value The amount to be transferred.
"""
self._transfer(msg.sender, _to, _value)
return True
@external
def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
"""
@dev Transfer tokens from one address to another.
@param _from address The address which you want to send tokens from
@param _to address The address which you want to transfer to
@param _value uint256 the amount of tokens to be transferred
"""
self._transfer(_from, _to, _value)
_allowance: uint256 = self.allowance[_from][msg.sender]
if _allowance != max_value(uint256):
self.allowance[_from][msg.sender] = _allowance - _value
return True
@external
def approve(_spender : address, _value : uint256) -> bool:
"""
@notice Approve the passed address to transfer the specified amount of
tokens on behalf of msg.sender
@dev Beware that changing an allowance via this method brings the risk that
someone may use both the old and new allowance by unfortunate transaction
ordering: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
@param _spender The address which will transfer the funds
@param _value The amount of tokens that may be transferred
@return bool success
"""
self.allowance[msg.sender][_spender] = _value
log Approval(msg.sender, _spender, _value)
return True
@external
def permit(
_owner: address,
_spender: address,
_value: uint256,
_deadline: uint256,
_v: uint8,
_r: bytes32,
_s: bytes32
) -> bool:
"""
@notice Approves spender by owner's signature to expend owner's tokens.
See https://eips.ethereum.org/EIPS/eip-2612.
@dev Inspired by https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L753-L793
@dev Supports smart contract wallets which implement ERC1271
https://eips.ethereum.org/EIPS/eip-1271
@param _owner The address which is a source of funds and has signed the Permit.
@param _spender The address which is allowed to spend the funds.
@param _value The amount of tokens to be spent.
@param _deadline The timestamp after which the Permit is no longer valid.
@param _v The bytes[64] of the valid secp256k1 signature of permit by owner
@param _r The bytes[0:32] of the valid secp256k1 signature of permit by owner
@param _s The bytes[32:64] of the valid secp256k1 signature of permit by owner
@return True, if transaction completes successfully
"""
assert _owner != empty(address)
assert block.timestamp <= _deadline
nonce: uint256 = self.nonces[_owner]
digest: bytes32 = keccak256(
concat(
b"\x19\x01",
self.DOMAIN_SEPARATOR,
keccak256(_abi_encode(PERMIT_TYPEHASH, _owner, _spender, _value, nonce, _deadline))
)
)
if _owner.is_contract:
sig: Bytes[65] = concat(_abi_encode(_r, _s), slice(convert(_v, bytes32), 31, 1))
# reentrancy not a concern since this is a staticcall
assert ERC1271(_owner).isValidSignature(digest, sig) == ERC1271_MAGIC_VAL
else:
assert ecrecover(digest, convert(_v, uint256), convert(_r, uint256), convert(_s, uint256)) == _owner
self.allowance[_owner][_spender] = _value
self.nonces[_owner] = nonce + 1
log Approval(_owner, _spender, _value)
return True
### StableSwap Functionality ###
@pure
@internal
def pack_prices(p1: uint256, p2: uint256) -> uint256:
assert p1 < 2**128
assert p2 < 2**128
return p1 | shift(p2, 128)
@view
@external
def last_price() -> uint256:
return self.last_prices_packed & (2**128 - 1)
@view
@external
def ema_price() -> uint256:
return shift(self.last_prices_packed, -128)
@view
@internal
def _stored_rates() -> uint256[N_COINS]:
assert self.originator == empty(address), "Set oracle"
rates: uint256[N_COINS] = RATE_MULTIPLIERS
oracle: uint256 = self.oracle_method
if oracle != 0:
# NOTE: assumed that response is of precision 10**18
response: Bytes[32] = raw_call(
convert(oracle % 2**160, address),
_abi_encode(oracle & ORACLE_BIT_MASK),
max_outsize=32,
is_static_call=True,
)
assert len(response) != 0
rates[1] = rates[1] * convert(response, uint256) / PRECISION
return rates
@view
@external
def stored_rates() -> uint256[N_COINS]:
return self._stored_rates()
@view
@internal
def _balances(_value: uint256 = 0) -> uint256[N_COINS]:
return [
self.balance - self.admin_balances[0] - _value,
ERC20(self.coins[1]).balanceOf(self) - self.admin_balances[1]
]
@view
@external
def balances(i: uint256) -> uint256:
"""
@notice Get the current balance of a coin within the
pool, less the accrued admin fees
@param i Index value for the coin to query balance of
@return Token balance
"""
return self._balances()[i]
@view
@internal
def _A() -> uint256:
"""
Handle ramping A up or down
"""
t1: uint256 = self.future_A_time
A1: uint256 = self.future_A
if block.timestamp < t1:
A0: uint256 = self.initial_A
t0: uint256 = self.initial_A_time
# Expressions in uint256 cannot have negative numbers, thus "if"
if A1 > A0:
return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
else:
return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0)
else: # when t1 == 0 or block.timestamp >= t1
return A1
@view
@external
def admin_fee() -> uint256:
return ADMIN_FEE
@view
@external
def A() -> uint256:
return self._A() / A_PRECISION
@view
@external
def A_precise() -> uint256:
return self._A()
@pure
@internal
def _xp_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256[N_COINS]:
result: uint256[N_COINS] = empty(uint256[N_COINS])
for i in range(N_COINS):
result[i] = _rates[i] * _balances[i] / PRECISION
return result
@pure
@internal
def get_D(_xp: uint256[N_COINS], _amp: uint256) -> uint256:
"""
D invariant calculation in non-overflowing integer operations
iteratively
A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) / (n**n * prod(x_i))
Converging solution:
D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) / (n**n prod(x_i))) / (A * n**n - 1)
"""
S: uint256 = 0
for x in _xp:
S += x
if S == 0:
return 0
D: uint256 = S
Ann: uint256 = _amp * N_COINS
for i in range(255):
D_P: uint256 = D * D / _xp[0] * D / _xp[1] / (N_COINS)**2
Dprev: uint256 = D
D = (Ann * S / A_PRECISION + D_P * N_COINS) * D / ((Ann - A_PRECISION) * D / A_PRECISION + (N_COINS + 1) * D_P)
# Equality with the precision of 1
if D > Dprev:
if D - Dprev <= 1:
return D
else:
if Dprev - D <= 1:
return D
# convergence typically occurs in 4 rounds or less, this should be unreachable!
# if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
raise
@view
@internal
def get_D_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS], _amp: uint256) -> uint256:
xp: uint256[N_COINS] = self._xp_mem(_rates, _balances)
return self.get_D(xp, _amp)
@internal
@view
def _get_p(xp: uint256[N_COINS], amp: uint256, D: uint256) -> uint256:
# dx_0 / dx_1 only, however can have any number of coins in pool
ANN: uint256 = amp * N_COINS
Dr: uint256 = D / (N_COINS**N_COINS)
for i in range(N_COINS):
Dr = Dr * D / xp[i]
return 10**18 * (ANN * xp[0] / A_PRECISION + Dr * xp[0] / xp[1]) / (ANN * xp[0] / A_PRECISION + Dr)
@external
@view
def get_p() -> uint256:
amp: uint256 = self._A()
xp: uint256[N_COINS] = self._xp_mem(self._stored_rates(), self._balances())
D: uint256 = self.get_D(xp, amp)
return self._get_p(xp, amp, D)
@internal
@view
def exp(power: int256) -> uint256:
if power <= -42139678854452767551:
return 0
if power >= 135305999368893231589:
raise "exp overflow"
x: int256 = unsafe_div(unsafe_mul(power, 2**96), 10**18)
k: int256 = unsafe_div(
unsafe_add(
unsafe_div(unsafe_mul(x, 2**96), 54916777467707473351141471128),
2**95),
2**96)
x = unsafe_sub(x, unsafe_mul(k, 54916777467707473351141471128))
y: int256 = unsafe_add(x, 1346386616545796478920950773328)
y = unsafe_add(unsafe_div(unsafe_mul(y, x), 2**96), 57155421227552351082224309758442)
p: int256 = unsafe_sub(unsafe_add(y, x), 94201549194550492254356042504812)
p = unsafe_add(unsafe_div(unsafe_mul(p, y), 2**96), 28719021644029726153956944680412240)
p = unsafe_add(unsafe_mul(p, x), (4385272521454847904659076985693276 * 2**96))
q: int256 = x - 2855989394907223263936484059900
q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 50020603652535783019961831881945)
q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 533845033583426703283633433725380)
q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 3604857256930695427073651918091429)
q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 14423608567350463180887372962807573)
q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 26449188498355588339934803723976023)
return shift(
unsafe_mul(convert(unsafe_div(p, q), uint256), 3822833074963236453042738258902158003155416615667),
unsafe_sub(k, 195))
@internal
@view
def _ma_price() -> uint256:
ma_last_time: uint256 = self.ma_last_time
pp: uint256 = self.last_prices_packed
last_price: uint256 = min(pp & (2**128 - 1), 2 * 10**18) # Limit the price going into EMA to not be more than 2.0
last_ema_price: uint256 = shift(pp, -128)
if ma_last_time < block.timestamp:
alpha: uint256 = self.exp(- convert((block.timestamp - ma_last_time) * 10**18 / self.ma_exp_time, int256))
return (last_price * (10**18 - alpha) + last_ema_price * alpha) / 10**18
else:
return last_ema_price
@external
@view
@nonreentrant('lock')
def price_oracle() -> uint256:
"""
@notice EMA price oracle based on the last state prices
Prices are taken after rate multiplier is applied (if it is set)
"""
return self._ma_price()
@internal
def save_p_from_price(last_price: uint256):
"""
Saves current price and its EMA
"""
if last_price != 0:
self.last_prices_packed = self.pack_prices(last_price, self._ma_price())
if self.ma_last_time < block.timestamp:
self.ma_last_time = block.timestamp
@internal
def save_p(xp: uint256[N_COINS], amp: uint256, D: uint256):
"""
Saves current price and its EMA
"""
self.save_p_from_price(self._get_p(xp, amp, D))
@view
@external
@nonreentrant('lock')
def get_virtual_price() -> uint256:
"""
@notice The current virtual price of the pool LP token
@dev Useful for calculating profits
@return LP token virtual price normalized to 1e18
"""
amp: uint256 = self._A()
xp: uint256[N_COINS] = self._xp_mem(self._stored_rates(), self._balances())
D: uint256 = self.get_D(xp, amp)
# D is in the units similar to DAI (e.g. converted to precision 1e18)
# When balanced, D = n * x_u - total virtual value of the portfolio
return D * PRECISION / self.totalSupply
@view
@external
def calc_token_amount(_amounts: uint256[N_COINS], _is_deposit: bool) -> uint256:
"""
@notice Calculate addition or reduction in token supply from a deposit or withdrawal
@dev This calculation accounts for slippage, but not fees.
Needed to prevent front-running, not for precise calculations!
@param _amounts Amount of each coin being deposited
@param _is_deposit set True for deposits, False for withdrawals
@return Expected amount of LP tokens received
"""
amp: uint256 = self._A()
balances: uint256[N_COINS] = self._balances()
rates: uint256[N_COINS] = self._stored_rates()
D0: uint256 = self.get_D_mem(rates, balances, amp)
for i in range(N_COINS):
amount: uint256 = _amounts[i]
if _is_deposit:
balances[i] += amount
else:
balances[i] -= amount
D1: uint256 = self.get_D_mem(rates, balances, amp)
diff: uint256 = 0
if _is_deposit:
diff = D1 - D0
else:
diff = D0 - D1
return diff * self.totalSupply / D0
@payable
@external
@nonreentrant('lock')
def add_liquidity(
_amounts: uint256[N_COINS],
_min_mint_amount: uint256,
_receiver: address = msg.sender
) -> uint256:
"""
@notice Deposit coins into the pool
@param _amounts List of amounts of coins to deposit
@param _min_mint_amount Minimum amount of LP tokens to mint from the deposit
@param _receiver Address that owns the minted LP tokens
@return Amount of LP tokens received by depositing
"""
amp: uint256 = self._A()
old_balances: uint256[N_COINS] = self._balances(msg.value)
rates: uint256[N_COINS] = self._stored_rates()
# Initial invariant
D0: uint256 = self.get_D_mem(rates, old_balances, amp)
total_supply: uint256 = self.totalSupply
new_balances: uint256[N_COINS] = old_balances
for i in range(N_COINS):
amount: uint256 = _amounts[i]
if total_supply == 0:
assert amount > 0 # dev: initial deposit requires all coins
new_balances[i] += amount
# Invariant after change
D1: uint256 = self.get_D_mem(rates, new_balances, amp)
assert D1 > D0
# We need to recalculate the invariant accounting for fees
# to calculate fair user's share
fees: uint256[N_COINS] = empty(uint256[N_COINS])
mint_amount: uint256 = 0
if total_supply > 0:
# Only account for fees if we are not the first to deposit
base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
difference: uint256 = 0
new_balance: uint256 = new_balances[i]
if ideal_balance > new_balance:
difference = ideal_balance - new_balance
else:
difference = new_balance - ideal_balance
fees[i] = base_fee * difference / FEE_DENOMINATOR
self.admin_balances[i] += fees[i] * ADMIN_FEE / FEE_DENOMINATOR
new_balances[i] -= fees[i]
xp: uint256[N_COINS] = self._xp_mem(rates, new_balances)
D2: uint256 = self.get_D(xp, amp)
mint_amount = total_supply * (D2 - D0) / D0
self.save_p(xp, amp, D2)
else:
mint_amount = D1 # Take the dust if there was any
assert mint_amount >= _min_mint_amount, "Slippage screwed you"
# Take coins from the sender
assert msg.value == _amounts[0]
if _amounts[1] > 0:
assert ERC20(self.coins[1]).transferFrom(msg.sender, self, _amounts[1], default_return_value=True) # dev: failed transfer
# Mint pool tokens
total_supply += mint_amount
self.balanceOf[_receiver] += mint_amount
self.totalSupply = total_supply
log Transfer(empty(address), _receiver, mint_amount)
log AddLiquidity(msg.sender, _amounts, fees, D1, total_supply)
return mint_amount
@view
@internal
def get_y(i: int128, j: int128, x: uint256, xp: uint256[N_COINS], _amp: uint256, _D: uint256) -> uint256:
"""
Calculate x[j] if one makes x[i] = x
Done by solving quadratic equation iteratively.
x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
x_1**2 + b*x_1 = c
x_1 = (x_1**2 + c) / (2*x_1 + b)
"""
# x in the input is converted to the same price/precision
assert i != j # dev: same coin
assert j >= 0 # dev: j below zero
assert j < N_COINS_128 # dev: j above N_COINS
# should be unreachable, but good for safety
assert i >= 0
assert i < N_COINS_128
amp: uint256 = _amp
D: uint256 = _D
if _D == 0:
amp = self._A()
D = self.get_D(xp, amp)
S_: uint256 = 0
_x: uint256 = 0
y_prev: uint256 = 0
c: uint256 = D
Ann: uint256 = amp * N_COINS
for _i in range(N_COINS_128):
if _i == i:
_x = x
elif _i != j:
_x = xp[_i]
else:
continue
S_ += _x
c = c * D / (_x * N_COINS)
c = c * D * A_PRECISION / (Ann * N_COINS)
b: uint256 = S_ + D * A_PRECISION / Ann # - D
y: uint256 = D
for _i in range(255):
y_prev = y
y = (y*y + c) / (2 * y + b - D)
# Equality with the precision of 1
if y > y_prev:
if y - y_prev <= 1:
return y
else:
if y_prev - y <= 1:
return y
raise
@view
@external
def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
"""
@notice Calculate the current output dy given input dx
@dev Index values can be found via the `coins` public getter method
@param i Index value for the coin to send
@param j Index value of the coin to recieve
@param dx Amount of `i` being exchanged
@return Amount of `j` predicted
"""
rates: uint256[N_COINS] = self._stored_rates()
xp: uint256[N_COINS] = self._xp_mem(rates, self._balances())
x: uint256 = xp[i] + (dx * rates[i] / PRECISION)
y: uint256 = self.get_y(i, j, x, xp, 0, 0)
dy: uint256 = xp[j] - y - 1
fee: uint256 = self.fee * dy / FEE_DENOMINATOR
return (dy - fee) * PRECISION / rates[j]
@payable
@external
@nonreentrant('lock')
def exchange(
i: int128,
j: int128,
_dx: uint256,
_min_dy: uint256,
_receiver: address = msg.sender,
) -> uint256:
"""
@notice Perform an exchange between two coins
@dev Index values can be found via the `coins` public getter method
@param i Index value for the coin to send
@param j Index valie of the coin to recieve
@param _dx Amount of `i` being exchanged
@param _min_dy Minimum amount of `j` to receive
@return Actual amount of `j` received
"""
rates: uint256[N_COINS] = self._stored_rates()
old_balances: uint256[N_COINS] = self._balances(msg.value)
xp: uint256[N_COINS] = self._xp_mem(rates, old_balances)
x: uint256 = xp[i] + _dx * rates[i] / PRECISION
amp: uint256 = self._A()
D: uint256 = self.get_D(xp, amp)
y: uint256 = self.get_y(i, j, x, xp, amp, D)
dy: uint256 = xp[j] - y - 1 # -1 just in case there were some rounding errors
dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR
# Convert all to real units
dy = (dy - dy_fee) * PRECISION / rates[j]
assert dy >= _min_dy, "Exchange resulted in fewer coins than expected"
# xp is not used anymore, so we reuse it for price calc
xp[i] = x
xp[j] = y
# D is not changed because we did not apply a fee
self.save_p(xp, amp, D)
dy_admin_fee: uint256 = dy_fee * ADMIN_FEE / FEE_DENOMINATOR * PRECISION / rates[j]
if dy_admin_fee != 0:
self.admin_balances[j] += dy_admin_fee
coin: address = self.coins[1]
if i == 0:
assert msg.value == _dx
assert ERC20(coin).transfer(_receiver, dy, default_return_value=True)
else:
assert msg.value == 0
assert ERC20(coin).transferFrom(msg.sender, self, _dx, default_return_value=True)
raw_call(_receiver, b"", value=dy)
log TokenExchange(msg.sender, i, _dx, j, dy)
return dy
@external
@nonreentrant('lock')
def remove_liquidity(
_burn_amount: uint256,
_min_amounts: uint256[N_COINS],
_receiver: address = msg.sender
) -> uint256[N_COINS]:
"""
@notice Withdraw coins from the pool
@dev Withdrawal amounts are based on current deposit ratios
@param _burn_amount Quantity of LP tokens to burn in the withdrawal
@param _min_amounts Minimum amounts of underlying coins to receive
@param _receiver Address that receives the withdrawn coins
@return List of amounts of coins that were withdrawn
"""
total_supply: uint256 = self.totalSupply
amounts: uint256[N_COINS] = self._balances()
for i in range(N_COINS):
value: uint256 = amounts[i] * _burn_amount / total_supply
assert value >= _min_amounts[i], "Withdrawal resulted in fewer coins than expected"
amounts[i] = value
if i == 0:
raw_call(_receiver, b"", value=value)
else:
assert ERC20(self.coins[1]).transfer(_receiver, value, default_return_value=True)
total_supply -= _burn_amount
self.balanceOf[msg.sender] -= _burn_amount
self.totalSupply = total_supply
log Transfer(msg.sender, empty(address), _burn_amount)
log RemoveLiquidity(msg.sender, amounts, empty(uint256[N_COINS]), total_supply)
return amounts
@external
@nonreentrant('lock')
def remove_liquidity_imbalance(
_amounts: uint256[N_COINS],
_max_burn_amount: uint256,
_receiver: address = msg.sender
) -> uint256:
"""
@notice Withdraw coins from the pool in an imbalanced amount
@param _amounts List of amounts of underlying coins to withdraw
@param _max_burn_amount Maximum amount of LP token to burn in the withdrawal
@param _receiver Address that receives the withdrawn coins
@return Actual amount of the LP token burned in the withdrawal
"""
amp: uint256 = self._A()
rates: uint256[N_COINS] = self._stored_rates()
old_balances: uint256[N_COINS] = self._balances()
D0: uint256 = self.get_D_mem(rates, old_balances, amp)
new_balances: uint256[N_COINS] = old_balances
for i in range(N_COINS):
new_balances[i] -= _amounts[i]
D1: uint256 = self.get_D_mem(rates, new_balances, amp)
fees: uint256[N_COINS] = empty(uint256[N_COINS])
base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
difference: uint256 = 0
new_balance: uint256 = new_balances[i]
if ideal_balance > new_balance:
difference = ideal_balance - new_balance
else:
difference = new_balance - ideal_balance
fees[i] = base_fee * difference / FEE_DENOMINATOR
self.admin_balances[i] += fees[i] * ADMIN_FEE / FEE_DENOMINATOR
new_balances[i] -= fees[i]
new_balances = self._xp_mem(rates, new_balances)
D2: uint256 = self.get_D(new_balances, amp)
self.save_p(new_balances, amp, D2)
total_supply: uint256 = self.totalSupply
burn_amount: uint256 = ((D0 - D2) * total_supply / D0) + 1
assert burn_amount > 1 # dev: zero tokens burned
assert burn_amount <= _max_burn_amount, "Slippage screwed you"
total_supply -= burn_amount
self.totalSupply = total_supply
self.balanceOf[msg.sender] -= burn_amount
log Transfer(msg.sender, empty(address), burn_amount)
if _amounts[0] != 0:
raw_call(_receiver, b"", value=_amounts[0])
if _amounts[1] != 0:
assert ERC20(self.coins[1]).transfer(_receiver, _amounts[1], default_return_value=True)
log RemoveLiquidityImbalance(msg.sender, _amounts, fees, D1, total_supply)
return burn_amount
@pure
@internal
def get_y_D(A: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256:
"""
Calculate x[i] if one reduces D from being calculated for xp to D
Done by solving quadratic equation iteratively.
x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
x_1**2 + b*x_1 = c
x_1 = (x_1**2 + c) / (2*x_1 + b)
"""
# x in the input is converted to the same price/precision
assert i >= 0 # dev: i below zero
assert i < N_COINS_128 # dev: i above N_COINS
S_: uint256 = 0
_x: uint256 = 0
y_prev: uint256 = 0
c: uint256 = D
Ann: uint256 = A * N_COINS
for _i in range(N_COINS_128):
if _i != i:
_x = xp[_i]
else:
continue
S_ += _x
c = c * D / (_x * N_COINS)
c = c * D * A_PRECISION / (Ann * N_COINS)
b: uint256 = S_ + D * A_PRECISION / Ann
y: uint256 = D
for _i in range(255):
y_prev = y
y = (y*y + c) / (2 * y + b - D)
# Equality with the precision of 1
if y > y_prev:
if y - y_prev <= 1:
return y
else:
if y_prev - y <= 1:
return y
raise
@view
@internal
def _calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256[3]:
# First, need to calculate
# * Get current D
# * Solve Eqn against y_i for D - _token_amount
amp: uint256 = self._A()
rates: uint256[N_COINS] = self._stored_rates()
xp: uint256[N_COINS] = self._xp_mem(rates, self._balances())
D0: uint256 = self.get_D(xp, amp)
total_supply: uint256 = self.totalSupply
D1: uint256 = D0 - _burn_amount * D0 / total_supply
new_y: uint256 = self.get_y_D(amp, i, xp, D1)
base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
xp_reduced: uint256[N_COINS] = empty(uint256[N_COINS])
for j in range(N_COINS_128):
dx_expected: uint256 = 0
xp_j: uint256 = xp[j]
if j == i:
dx_expected = xp_j * D1 / D0 - new_y
else:
dx_expected = xp_j - xp_j * D1 / D0
xp_reduced[j] = xp_j - base_fee * dx_expected / FEE_DENOMINATOR
dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
dy_0: uint256 = (xp[i] - new_y) * PRECISION / rates[i] # w/o fees
dy = (dy - 1) * PRECISION / rates[i] # Withdraw less to account for rounding errors
xp[i] = new_y
last_p: uint256 = 0
if new_y > 0:
last_p = self._get_p(xp, amp, D1)
return [dy, dy_0 - dy, last_p]
@view
@external
def calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256:
"""
@notice Calculate the amount received when withdrawing a single coin
@param _burn_amount Amount of LP tokens to burn in the withdrawal
@param i Index value of the coin to withdraw
@return Amount of coin received
"""
return self._calc_withdraw_one_coin(_burn_amount, i)[0]
@external
@nonreentrant('lock')
def remove_liquidity_one_coin(
_burn_amount: uint256,
i: int128,
_min_received: uint256,
_receiver: address = msg.sender,
) -> uint256:
"""
@notice Withdraw a single coin from the pool
@param _burn_amount Amount of LP tokens to burn in the withdrawal
@param i Index value of the coin to withdraw
@param _min_received Minimum amount of coin to receive
@param _receiver Address that receives the withdrawn coins
@return Amount of coin received
"""
dy: uint256[3] = self._calc_withdraw_one_coin(_burn_amount, i)
assert dy[0] >= _min_received, "Not enough coins removed"
self.admin_balances[i] += dy[1] * ADMIN_FEE / FEE_DENOMINATOR
total_supply: uint256 = self.totalSupply - _burn_amount
self.totalSupply = total_supply
self.balanceOf[msg.sender] -= _burn_amount
log Transfer(msg.sender, empty(address), _burn_amount)
if i == 0:
raw_call(_receiver, b"", value=dy[0])
else:
assert ERC20(self.coins[1]).transfer(_receiver, dy[0], default_return_value=True)
log RemoveLiquidityOne(msg.sender, _burn_amount, dy[0], total_supply)
self.save_p_from_price(dy[2])
return dy[0]
@external
def ramp_A(_future_A: uint256, _future_time: uint256):
assert msg.sender == Factory(self.factory).admin() # dev: only owner
assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME
assert _future_time >= block.timestamp + MIN_RAMP_TIME # dev: insufficient time
_initial_A: uint256 = self._A()
_future_A_p: uint256 = _future_A * A_PRECISION
assert _future_A > 0 and _future_A < MAX_A
if _future_A_p < _initial_A:
assert _future_A_p * MAX_A_CHANGE >= _initial_A
else:
assert _future_A_p <= _initial_A * MAX_A_CHANGE
self.initial_A = _initial_A
self.future_A = _future_A_p
self.initial_A_time = block.timestamp
self.future_A_time = _future_time
log RampA(_initial_A, _future_A_p, block.timestamp, _future_time)
@external
def stop_ramp_A():
assert msg.sender == Factory(self.factory).admin() # dev: only owner
current_A: uint256 = self._A()
self.initial_A = current_A
self.future_A = current_A
self.initial_A_time = block.timestamp
self.future_A_time = block.timestamp
# now (block.timestamp < t1) is always False, so we return saved A
log StopRampA(current_A, block.timestamp)
@external
def withdraw_admin_fees():
receiver: address = Factory(self.factory).get_fee_receiver(self)
amount: uint256 = self.admin_balances[0]
if amount != 0:
raw_call(receiver, b"", value=amount)
amount = self.admin_balances[1]
if amount != 0:
assert ERC20(self.coins[1]).transfer(receiver, amount, default_return_value=True)
self.admin_balances = empty(uint256[N_COINS])
@external
def commit_new_fee(_new_fee: uint256):
assert msg.sender == Factory(self.factory).admin()
assert _new_fee <= MAX_FEE
assert self.admin_action_deadline == 0
self.future_fee = _new_fee
self.admin_action_deadline = block.timestamp + ADMIN_ACTIONS_DEADLINE_DT
log CommitNewFee(_new_fee)
@external
def apply_new_fee():
assert msg.sender == Factory(self.factory).admin()
deadline: uint256 = self.admin_action_deadline
assert deadline != 0 and block.timestamp >= deadline
fee: uint256 = self.future_fee
self.fee = fee
self.admin_action_deadline = 0
log ApplyNewFee(fee)
@external
def set_ma_exp_time(_ma_exp_time: uint256):
assert msg.sender == Factory(self.factory).admin() # dev: only owner
assert _ma_exp_time != 0
self.ma_exp_time = _ma_exp_time
@external
def set_oracle(_method_id: bytes4, _oracle: address):
"""
@notice Set the oracles used for calculating rates
@dev if any value is empty, rate will fallback to value provided on initialize, one time use.
The precision of the rate returned by the oracle MUST be 18.
@param _method_id method_id needed to call on `_oracle` to fetch rate
@param _oracle oracle address
"""
assert msg.sender == self.originator
self.oracle_method = convert(_method_id, uint256) * 2**224 | convert(_oracle, uint256)
self.originator = empty(address)Contract ABI
API[{"name":"Transfer","inputs":[{"name":"sender","type":"address","indexed":true},{"name":"receiver","type":"address","indexed":true},{"name":"value","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"Approval","inputs":[{"name":"owner","type":"address","indexed":true},{"name":"spender","type":"address","indexed":true},{"name":"value","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"TokenExchange","inputs":[{"name":"buyer","type":"address","indexed":true},{"name":"sold_id","type":"int128","indexed":false},{"name":"tokens_sold","type":"uint256","indexed":false},{"name":"bought_id","type":"int128","indexed":false},{"name":"tokens_bought","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"AddLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"invariant","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityOne","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amount","type":"uint256","indexed":false},{"name":"coin_amount","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityImbalance","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fees","type":"uint256[2]","indexed":false},{"name":"invariant","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RampA","inputs":[{"name":"old_A","type":"uint256","indexed":false},{"name":"new_A","type":"uint256","indexed":false},{"name":"initial_time","type":"uint256","indexed":false},{"name":"future_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"StopRampA","inputs":[{"name":"A","type":"uint256","indexed":false},{"name":"t","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"CommitNewFee","inputs":[{"name":"new_fee","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"ApplyNewFee","inputs":[{"name":"fee","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"stateMutability":"nonpayable","type":"constructor","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"initialize","inputs":[{"name":"_name","type":"string"},{"name":"_symbol","type":"string"},{"name":"_coins","type":"address[4]"},{"name":"_rate_multipliers","type":"uint256[4]"},{"name":"_A","type":"uint256"},{"name":"_fee","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"transfer","inputs":[{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"nonpayable","type":"function","name":"transferFrom","inputs":[{"name":"_from","type":"address"},{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"nonpayable","type":"function","name":"approve","inputs":[{"name":"_spender","type":"address"},{"name":"_value","type":"uint256"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"nonpayable","type":"function","name":"permit","inputs":[{"name":"_owner","type":"address"},{"name":"_spender","type":"address"},{"name":"_value","type":"uint256"},{"name":"_deadline","type":"uint256"},{"name":"_v","type":"uint8"},{"name":"_r","type":"bytes32"},{"name":"_s","type":"bytes32"}],"outputs":[{"name":"","type":"bool"}]},{"stateMutability":"view","type":"function","name":"last_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ema_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"stored_rates","inputs":[],"outputs":[{"name":"","type":"uint256[2]"}]},{"stateMutability":"view","type":"function","name":"balances","inputs":[{"name":"i","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"admin_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"A_precise","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_p","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"price_oracle","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_virtual_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_token_amount","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_is_deposit","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_min_mint_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_min_mint_amount","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_dy","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"dx","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"int128"},{"name":"j","type":"int128"},{"name":"_dx","type":"uint256"},{"name":"_min_dy","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"_min_amounts","type":"uint256[2]"}],"outputs":[{"name":"","type":"uint256[2]"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"_min_amounts","type":"uint256[2]"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256[2]"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_imbalance","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_max_burn_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_imbalance","inputs":[{"name":"_amounts","type":"uint256[2]"},{"name":"_max_burn_amount","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_withdraw_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"},{"name":"_min_received","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"_burn_amount","type":"uint256"},{"name":"i","type":"int128"},{"name":"_min_received","type":"uint256"},{"name":"_receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"ramp_A","inputs":[{"name":"_future_A","type":"uint256"},{"name":"_future_time","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"stop_ramp_A","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"withdraw_admin_fees","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"commit_new_fee","inputs":[{"name":"_new_fee","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"apply_new_fee","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"set_ma_exp_time","inputs":[{"name":"_ma_exp_time","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"set_oracle","inputs":[{"name":"_method_id","type":"bytes4"},{"name":"_oracle","type":"address"}],"outputs":[]},{"stateMutability":"view","type":"function","name":"version","inputs":[],"outputs":[{"name":"","type":"string"}]},{"stateMutability":"view","type":"function","name":"coins","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"admin_balances","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"admin_action_deadline","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"oracle_method","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"name","inputs":[],"outputs":[{"name":"","type":"string"}]},{"stateMutability":"view","type":"function","name":"symbol","inputs":[],"outputs":[{"name":"","type":"string"}]},{"stateMutability":"view","type":"function","name":"balanceOf","inputs":[{"name":"arg0","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"allowance","inputs":[{"name":"arg0","type":"address"},{"name":"arg1","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"totalSupply","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"decimals","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"DOMAIN_SEPARATOR","inputs":[],"outputs":[{"name":"","type":"bytes32"}]},{"stateMutability":"view","type":"function","name":"nonces","inputs":[{"name":"arg0","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ma_exp_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ma_last_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]}]Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.
Add Token to MetaMask (Web3)