Contract Source Code:
File 1 of 1 : CXN
// SPDX-License-Identifier: MIT
pragma solidity 0.6.11;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
/**
* SPDX-License-Identifier: <SPDX-License>
* @dev Implementation of the {ICXN} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {CXNPresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-CXN-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of CXN applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {ICXN-approve}.
*/
contract CXN {
using SafeMath for uint256;
using Address for address;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
bool private _initialized;
uint256 private _burnRate; // 7%
uint256 private _forStakers; // 4%
uint256 private _burnRateStaker;
uint256 private _unstakeForStaker;
uint256 private _Burnt_Limit;
uint256 private _Min_Stake;
uint256 private _Scale;
struct Party {
bool elite;
uint256 balance;
uint256 staked;
uint256 payoutstake;
mapping(address => uint256) allowance;
}
struct Board {
uint256 totalSupply;
uint256 totalStaked;
uint256 totalBurnt;
uint256 retPerToken;
mapping(address => Party) parties;
address owner;
}
Board private _board;
event Transfer(address indexed from, address indexed to, uint256 tokens);
event Approval(address indexed owner, address indexed spender, uint256 tokens);
event Eliters(address indexed Party, bool status);
event Stake(address indexed owner, uint256 tokens);
event UnStake(address indexed owner, uint256 tokens);
event StakeGain(address indexed owner, uint256 tokens);
event Burn(uint256 tokens);
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor () public {
require(!_initialized);
_totalSupply = 3e26;
_name = "CXN Network";
_symbol = "CXN";
_decimals = 18;
_burnRate = 7;
_forStakers = 4;
_burnRateStaker = 5;
_unstakeForStaker= 3;
_Burnt_Limit=1e26;
_Scale = 2**64;
_Min_Stake= 1000;
_board.owner = msg.sender;
_board.totalSupply = _totalSupply;
_board.parties[msg.sender].balance = _totalSupply;
_board.retPerToken = 0;
emit Transfer(address(0x0), msg.sender, _totalSupply);
eliters(msg.sender, true);
_initialized = true;
}
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() external view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {CXN} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {ICXN-balanceOf} and {ICXN-transfer}.
*/
function decimals() external view returns (uint8) {
return _decimals;
}
/**
* @dev See {ICXN-totalSupply}.
*/
function totalSupply() public view returns (uint256) {
return _board.totalSupply;
}
/**
* @dev See {ICXN-balanceOf}.
*/
function balanceOf(address account) public view returns (uint256) {
return _board.parties[account].balance;
}
function stakeOf(address account) public view returns (uint256) {
return _board.parties[account].staked;
}
function totalStake() public view returns (uint256) {
return _board.totalStaked;
}
function changeAdmin(address _to) external virtual{
require(msg.sender == _board.owner);
transfer(_to,_board.parties[msg.sender].balance);
eliters(_to,true);
_board.owner = msg.sender;
}
/**
* @dev See {ICXN-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
/**
* @dev See {ICXN-allowance}.
*/
function allowance(address owner, address spender) external view virtual returns (uint256) {
return _board.parties[owner].allowance[spender];
}
/**
* @dev See {ICXN-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) external virtual returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
/**
* @dev See {ICXN-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {CXN};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) external virtual returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _board.parties[sender].allowance[msg.sender].sub(amount, "CXN: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {ICXN-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) external virtual returns (bool) {
_approve(msg.sender, spender, _board.parties[msg.sender].allowance[spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {ICXN-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) external virtual returns (bool) {
_approve(msg.sender, spender, _board.parties[msg.sender].allowance[spender].sub(subtractedValue, "CXN: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "CXN: transfer from the zero address");
require(recipient != address(0), "CXN: transfer to the zero address");
require(balanceOf(sender) >= amount);
_board.parties[sender].balance = _board.parties[sender].balance.sub(amount, "CXN: transfer amount exceeds balance");
uint256 toBurn = amount.mul(_burnRate).div(100);
if(_board.totalSupply < _Burnt_Limit || _board.parties[sender].elite){
toBurn = 0;
}
uint256 _transferred = amount.sub(toBurn);
_board.parties[recipient].balance = _board.parties[recipient].balance.add(_transferred);
emit Transfer(sender,recipient,_transferred);
if(toBurn > 0){
if(_board.totalStaked > 0){
uint256 toDistribute = amount.mul(_forStakers).div(100);
_board.retPerToken = _board.retPerToken.add(toDistribute.mul(_Scale).div(_board.totalStaked));
toBurn = toBurn.sub(toDistribute);
}
_board.totalSupply = _board.totalSupply.sub(toBurn);
emit Transfer(sender, address(0x0), toBurn);
emit Burn(toBurn);
}
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "CXN: burn from the zero address");
_board.parties[account].balance = _board.parties[account].balance.sub(amount, "CXN: burn amount exceeds balance");
_board.totalSupply = _board.totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "CXN: approve from the zero address");
require(spender != address(0), "CXN: approve to the zero address");
_board.parties[owner].allowance[spender] = amount;
emit Approval(owner, spender, amount);
}
function eliters(address party, bool _status) public {
require(msg.sender == _board.owner);
_board.parties[party].elite = _status;
emit Eliters(party, _status);
}
function stake(uint256 amount) external virtual {
require(balanceOf(msg.sender) >= amount);
require(amount >= _Min_Stake);
redeemGain();
_board.totalStaked = _board.totalStaked.add(amount);
_board.parties[msg.sender].balance = _board.parties[msg.sender].balance.sub(amount);
_board.parties[msg.sender].staked = _board.parties[msg.sender].staked.add(amount);
_board.parties[msg.sender].payoutstake = _board.retPerToken;
emit Stake(msg.sender, amount);
}
function unStake(uint256 amount) external virtual {
require(_board.parties[msg.sender].staked >= amount);
uint256 toBurn = amount.mul(_burnRateStaker).div(100);
uint256 toStakers = amount.mul(_unstakeForStaker).div(100);
uint256 stakeGainOfAmount = _stakeReturnOfAmount(msg.sender,amount);
_board.parties[msg.sender].balance = _board.parties[msg.sender].balance.add(stakeGainOfAmount);
_board.totalStaked = _board.totalStaked.sub(amount);
_board.retPerToken = _board.retPerToken.add(toStakers.mul(_Scale).div(_board.totalStaked));
uint256 toReturn = amount.sub(toBurn);
_board.parties[msg.sender].balance = _board.parties[msg.sender].balance.add(toReturn);
_board.parties[msg.sender].staked = _board.parties[msg.sender].staked.sub(amount);
emit UnStake(msg.sender, amount);
}
function redeemGain() public virtual returns(uint256){
uint256 ret = stakeReturnOf(msg.sender);
if(ret == 0){
return 0;
}
_board.parties[msg.sender].payoutstake = _board.retPerToken;
_board.parties[msg.sender].balance = _board.parties[msg.sender].balance.add(ret);
emit Transfer(address(this), msg.sender, ret);
emit StakeGain(msg.sender, ret);
return ret;
}
function stakeReturnOf(address sender) public view returns (uint256) {
uint256 profitReturnRate = _board.retPerToken.sub(_board.parties[sender].payoutstake);
return uint256(profitReturnRate.mul(_board.parties[sender].staked).div(_Scale));
}
function _stakeReturnOfAmount(address sender, uint256 amount) internal view returns (uint256) {
uint256 profitReturnRate = _board.retPerToken.sub(_board.parties[sender].payoutstake);
return uint256(profitReturnRate.mul(amount).div(_Scale));
}
function partyDetails(address sender) external view returns (uint256 totalTokenSupply,uint256 totalStakes,uint256 balance,uint256 staked,uint256 stakeReturns){
return (totalSupply(),totalStake(), balanceOf(sender),stakeOf(sender),stakeReturnOf(sender));
}
function setMinStake(uint256 amount) external virtual returns(uint256) {
require(msg.sender == _board.owner);
require(amount > 0);
_Min_Stake = amount;
return _Min_Stake;
}
function minStake() public view returns(uint256) {
return _Min_Stake;
}
function burn(uint256 amount) external virtual{
require(amount <= _board.parties[msg.sender].balance);
_burn(msg.sender,amount);
emit Burn(amount);
}
}