ETH Price: $3,442.59 (+7.09%)

Contract

0xFa70Af4AF0Cc7cC4d767Ac6808C7E56375844D71
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Transaction Hash
Method
Block
From
To
0x799208a3c6d002e1f5bcb91e09acdf0262894ba0543768a489b414f852f20b97 Migrate(pending)2025-01-15 16:36:384 hrs ago1736958998IN
0xFa70Af4A...375844D71
0 ETH(Pending)(Pending)
Withdraw216314362025-01-15 17:40:233 hrs ago1736962823IN
0xFa70Af4A...375844D71
0 ETH0.0009143114.19560371
Withdraw216238902025-01-14 16:21:3529 hrs ago1736871695IN
0xFa70Af4A...375844D71
0 ETH0.0010225913.51687092
Withdraw216238632025-01-14 16:16:1129 hrs ago1736871371IN
0xFa70Af4A...375844D71
0 ETH0.0010065914.68067141
Withdraw216233042025-01-14 14:24:2330 hrs ago1736864663IN
0xFa70Af4A...375844D71
0 ETH0.000594678.67304332
Deposit For216212572025-01-14 7:33:5937 hrs ago1736840039IN
0xFa70Af4A...375844D71
0 ETH0.000193612.7493077
Deposit For216189672025-01-13 23:52:2345 hrs ago1736812343IN
0xFa70Af4A...375844D71
0 ETH0.000267253.74178205
Withdraw216169452025-01-13 17:06:112 days ago1736787971IN
0xFa70Af4A...375844D71
0 ETH0.000577059.03459624
Deposit For216142042025-01-13 7:54:232 days ago1736754863IN
0xFa70Af4A...375844D71
0 ETH0.000139552.56834228
Withdraw216138522025-01-13 6:43:472 days ago1736750627IN
0xFa70Af4A...375844D71
0 ETH0.000194522.57043326
Deposit For216120002025-01-13 0:29:352 days ago1736728175IN
0xFa70Af4A...375844D71
0 ETH0.000292643.83983228
Withdraw216091702025-01-12 15:00:473 days ago1736694047IN
0xFa70Af4A...375844D71
0 ETH0.000183063.12648113
Deposit For216088942025-01-12 14:05:233 days ago1736690723IN
0xFa70Af4A...375844D71
0 ETH0.000183332.23288677
Deposit For216085302025-01-12 12:52:113 days ago1736686331IN
0xFa70Af4A...375844D71
0 ETH0.000127111.66916339
Withdraw216084672025-01-12 12:39:353 days ago1736685575IN
0xFa70Af4A...375844D71
0 ETH0.000132062.04733768
Deposit ETH For216046702025-01-11 23:57:593 days ago1736639879IN
0xFa70Af4A...375844D71
0.001 ETH0.000199112.75068901
Deposit For216046632025-01-11 23:56:353 days ago1736639795IN
0xFa70Af4A...375844D71
0 ETH0.000179222.50894756
Deposit For216005992025-01-11 10:19:354 days ago1736590775IN
0xFa70Af4A...375844D71
0 ETH0.000127892.4
Deposit For215969492025-01-10 22:04:594 days ago1736546699IN
0xFa70Af4A...375844D71
0 ETH0.000315835.92435808
Withdraw215967792025-01-10 21:30:594 days ago1736544659IN
0xFa70Af4A...375844D71
0 ETH0.000419195.50028554
Withdraw215936392025-01-10 11:00:235 days ago1736506823IN
0xFa70Af4A...375844D71
0 ETH0.000450136.50634792
Deposit For215925442025-01-10 7:19:595 days ago1736493599IN
0xFa70Af4A...375844D71
0 ETH0.000252283.53228344
Withdraw215920512025-01-10 5:40:475 days ago1736487647IN
0xFa70Af4A...375844D71
0 ETH0.000447176.17165203
Deposit For215904472025-01-10 0:17:115 days ago1736468231IN
0xFa70Af4A...375844D71
0 ETH0.000377597.12112516
Deposit For215876182025-01-09 14:48:476 days ago1736434127IN
0xFa70Af4A...375844D71
0 ETH0.0007620414.28759293
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block
From
To
216046702025-01-11 23:57:593 days ago1736639879
0xFa70Af4A...375844D71
0.001 ETH
215687342025-01-06 23:33:598 days ago1736206439
0xFa70Af4A...375844D71
0.012 ETH
215593022025-01-05 15:54:2310 days ago1736092463
0xFa70Af4A...375844D71
0.0019 ETH
215368052025-01-02 12:32:3513 days ago1735821155
0xFa70Af4A...375844D71
0.005 ETH
215093762024-12-29 16:39:2317 days ago1735490363
0xFa70Af4A...375844D71
0.0086 ETH
214571822024-12-22 9:36:2324 days ago1734860183
0xFa70Af4A...375844D71
0.085 ETH
214569312024-12-22 8:45:3524 days ago1734857135
0xFa70Af4A...375844D71
0.03 ETH
214514552024-12-21 14:23:1125 days ago1734790991
0xFa70Af4A...375844D71
0.1 ETH
214466492024-12-20 22:14:3525 days ago1734732875
0xFa70Af4A...375844D71
0.00453907 ETH
214364462024-12-19 12:04:1127 days ago1734609851
0xFa70Af4A...375844D71
0.0006 ETH
214284512024-12-18 9:13:5928 days ago1734513239
0xFa70Af4A...375844D71
0.06 ETH
214281292024-12-18 8:08:4728 days ago1734509327
0xFa70Af4A...375844D71
0.01 ETH
214154142024-12-16 13:35:3530 days ago1734356135
0xFa70Af4A...375844D71
0.01 ETH
214086062024-12-15 14:46:3531 days ago1734273995
0xFa70Af4A...375844D71
0.01584439 ETH
213839662024-12-12 4:14:2334 days ago1733976863
0xFa70Af4A...375844D71
0.0225747 ETH
213589892024-12-08 16:32:3538 days ago1733675555
0xFa70Af4A...375844D71
1 ETH
213363582024-12-05 12:40:5941 days ago1733402459
0xFa70Af4A...375844D71
0.01314548 ETH
213149342024-12-02 12:50:2344 days ago1733143823
0xFa70Af4A...375844D71
0.00222115 ETH
213056162024-12-01 5:37:4745 days ago1733031467
0xFa70Af4A...375844D71
0.01 ETH
212735642024-11-26 17:57:4750 days ago1732643867
0xFa70Af4A...375844D71
10 ETH
212168162024-11-18 19:52:4758 days ago1731959567
0xFa70Af4A...375844D71
0.0165 ETH
211530682024-11-09 22:25:1166 days ago1731191111
0xFa70Af4A...375844D71
0.05 ETH
211528722024-11-09 21:45:5966 days ago1731188759
0xFa70Af4A...375844D71
0.0015 ETH
211427242024-11-08 11:48:2368 days ago1731066503
0xFa70Af4A...375844D71
0.02 ETH
211424102024-11-08 10:45:2368 days ago1731062723
0xFa70Af4A...375844D71
0.11 ETH
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x22BecbD1...8dF4ab9A3
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
ZtakingPool

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 24 : FormStakingPool.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {Nonces} from "@openzeppelin/contracts/utils/Nonces.sol";
import "./interface/IWETH.sol";

import "./interface/IMigrator.sol";
import "./interface/IFormStakingPool.sol";

/// @title Ztaking Pool
/// @notice A staking pool for liquid restaking token holders which rewards stakers with points from multiple platforms
contract ZtakingPool is IZtakingPool, Ownable2Step, Pausable, EIP712, Nonces {
    using SafeERC20 for IERC20;

    bytes32 private constant MIGRATE_TYPEHASH =
        keccak256(
            "Migrate(address user,address migratorContract,address destination,address[] tokens,uint256 signatureExpiry,uint256 nonce)"
        );

    // (tokenAddress => isAllowedForStaking)
    mapping(address => bool) public tokenAllowlist;

    // (tokenAddress => stakerAddress => stakedAmount)
    mapping(address => mapping(address => uint256)) public balance;

    // (migratorContract => isBlocklisted)
    mapping(address => bool) public migratorBlocklist;

    // Next eventId to emit
    uint256 private eventId;

    // Required signer for the migration message
    address public zircuitSigner;

    // ETH's special address
    address immutable WETH_ADDRESS;

    constructor(
        address _signer,
        address[] memory _tokensAllowed,
        address _weth
    ) Ownable(msg.sender) EIP712("ZtakingPool", "1") {
        if (_signer == address(0)) revert SignerCannotBeZeroAddress();
        if (_weth == address(0)) revert WETHCannotBeZeroAddress();

        WETH_ADDRESS = _weth;

        zircuitSigner = _signer;
        uint256 length = _tokensAllowed.length;
        for (uint256 i; i < length; ++i) {
            if (_tokensAllowed[i] == address(0))
                revert TokenCannotBeZeroAddress();
            tokenAllowlist[_tokensAllowed[i]] = true;
        }
    }

    /*//////////////////////////////////////////////////////////////
                            Staker Functions
    //////////////////////////////////////////////////////////////*/

    /**
     * @inheritdoc IZtakingPool
     */
    function depositFor(
        address _token,
        address _for,
        uint256 _amount
    ) external whenNotPaused {
        if (_amount == 0) revert DepositAmountCannotBeZero();
        if (_for == address(0)) revert CannotDepositForZeroAddress();
        if (!tokenAllowlist[_token]) revert TokenNotAllowedForStaking();

        balance[_token][_for] += _amount;

        emit Deposit(++eventId, _for, _token, _amount);

        IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
    }

    function depositETHFor(address _for) external payable whenNotPaused {
        if (msg.value == 0) revert DepositAmountCannotBeZero();
        if (_for == address(0)) revert CannotDepositForZeroAddress();
        if (!tokenAllowlist[WETH_ADDRESS]) revert TokenNotAllowedForStaking();

        balance[WETH_ADDRESS][_for] += msg.value;
        emit Deposit(++eventId, _for, WETH_ADDRESS, msg.value);

        IWETH(WETH_ADDRESS).deposit{value: msg.value}();
    }

    /**
     * @inheritdoc IZtakingPool
     */
    function withdraw(address _token, uint256 _amount) external {
        if (_amount == 0) revert WithdrawAmountCannotBeZero();

        balance[_token][msg.sender] -= _amount; //Will underfow if the staker has insufficient balance
        emit Withdraw(++eventId, msg.sender, _token, _amount);

        IERC20(_token).safeTransfer(msg.sender, _amount);
    }

    /**
     * @inheritdoc IZtakingPool
     */
    function migrateWithSig(
        address _user,
        address[] calldata _tokens,
        address _migratorContract,
        address _destination,
        uint256 _signatureExpiry,
        bytes memory _stakerSignature
    ) external onlyOwner {
        {
            bytes32 structHash = keccak256(
                abi.encode(
                    MIGRATE_TYPEHASH,
                    _user,
                    _migratorContract,
                    _destination,
                    //The array values are encoded as the keccak256 hash of the concatenated encodeData of their contents
                    //Ref: https://eips.ethereum.org/EIPS/eip-712#definition-of-encodedata
                    keccak256(abi.encodePacked(_tokens)),
                    _signatureExpiry,
                    _useNonce(_user)
                )
            );
            bytes32 constructedHash = _hashTypedDataV4(structHash);

            if (
                !SignatureChecker.isValidSignatureNow(
                    _user,
                    constructedHash,
                    _stakerSignature
                )
            ) {
                revert SignatureInvalid();
            }
        }

        uint256[] memory _amounts = _migrateChecks(
            _user,
            _tokens,
            _signatureExpiry,
            _migratorContract
        );
        _migrate(_user, _destination, _migratorContract, _tokens, _amounts);
    }

    /**
     * @inheritdoc IZtakingPool
     */
    function migrate(
        address[] calldata _tokens,
        address _migratorContract,
        address _destination,
        uint256 _signatureExpiry,
        bytes calldata _authorizationSignatureFromZircuit
    ) external {
        uint256[] memory _amounts = _migrateChecks(
            msg.sender,
            _tokens,
            _signatureExpiry,
            _migratorContract
        );

        bytes32 constructedHash = keccak256(
            abi.encodePacked(
                "\x19Ethereum Signed Message:\n32",
                keccak256(
                    abi.encodePacked(
                        _migratorContract,
                        _signatureExpiry,
                        address(this),
                        block.chainid
                    )
                )
            )
        );

        // verify that the migrator’s address is signed in the authorization signature by the correct signer (zircuitSigner)
        if (
            !SignatureChecker.isValidSignatureNow(
                zircuitSigner,
                constructedHash,
                _authorizationSignatureFromZircuit
            )
        ) {
            revert SignatureInvalid();
        }

        _migrate(
            msg.sender,
            _destination,
            _migratorContract,
            _tokens,
            _amounts
        );
    }

    function _migrateChecks(
        address _user,
        address[] calldata _tokens,
        uint256 _signatureExpiry,
        address _migratorContract
    ) internal view returns (uint256[] memory _amounts) {
        uint256 length = _tokens.length;
        if (length == 0) revert TokenArrayCannotBeEmpty();

        _amounts = new uint256[](length);

        for (uint256 i; i < length; ++i) {
            _amounts[i] = balance[_tokens[i]][_user];
            if (_amounts[i] == 0) revert UserDoesNotHaveStake();
        }

        if (block.timestamp >= _signatureExpiry) revert SignatureExpired(); // allows us to invalidate signature by having it expired

        if (migratorBlocklist[_migratorContract]) revert MigratorBlocked();
    }

    function _migrate(
        address _user,
        address _destination,
        address _migratorContract,
        address[] calldata _tokens,
        uint256[] memory _amounts
    ) internal {
        uint256 length = _tokens.length;
        //effects for-loop (state changes)
        for (uint256 i; i < length; ++i) {
            //if the balance has been already set to zero, then _tokens[i] is a duplicate of a previous token in the array
            if (balance[_tokens[i]][_user] == 0) revert DuplicateToken();

            balance[_tokens[i]][_user] = 0;
        }

        emit Migrate(
            ++eventId,
            _user,
            _tokens,
            _destination,
            _migratorContract,
            _amounts
        );

        //interactions for-loop (external calls)
        for (uint256 i; i < length; ++i) {
            IERC20(_tokens[i]).approve(_migratorContract, _amounts[i]);
        }

        IMigrator(_migratorContract).migrate(
            _user,
            _tokens,
            _destination,
            _amounts
        );
    }

    /*//////////////////////////////////////////////////////////////
                            Admin Functions
    //////////////////////////////////////////////////////////////*/

    /**
     * @inheritdoc IZtakingPool
     */
    function setZircuitSigner(address _signer) external onlyOwner {
        if (_signer == address(0)) revert SignerCannotBeZeroAddress();
        if (_signer == zircuitSigner) revert SignerAlreadySetToAddress();

        zircuitSigner = _signer;
        emit SignerChanged(_signer);
    }

    /**
     * @inheritdoc IZtakingPool
     */
    function setStakable(address _token, bool _canStake) external onlyOwner {
        if (_token == address(0)) revert TokenCannotBeZeroAddress();
        if (tokenAllowlist[_token] == _canStake)
            revert TokenAlreadyConfiguredWithState();

        tokenAllowlist[_token] = _canStake;
        emit TokenStakabilityChanged(_token, _canStake);
    }

    /**
     * @inheritdoc IZtakingPool
     */
    function blockMigrator(
        address _migrator,
        bool _blocklisted
    ) external onlyOwner {
        if (_migrator == address(0)) revert MigratorCannotBeZeroAddress();
        if (migratorBlocklist[_migrator] == _blocklisted)
            revert MigratorAlreadyAllowedOrBlocked();

        migratorBlocklist[_migrator] = _blocklisted;
        emit BlocklistChanged(_migrator, _blocklisted);
    }

    /**
     * @inheritdoc IZtakingPool
     */
    function pause() external onlyOwner whenNotPaused {
        _pause();
    }

    /**
     * @inheritdoc IZtakingPool
     */
    function unpause() external onlyOwner whenPaused {
        _unpause();
    }

    function renounceOwnership() public override {
        revert CannotRenounceOwnership();
    }
}

File 2 of 24 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 24 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 4 of 24 : IERC1271.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

File 5 of 24 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 6 of 24 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 7 of 24 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 8 of 24 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 9 of 24 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 10 of 24 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 11 of 24 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 12 of 24 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 13 of 24 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 14 of 24 : SignatureChecker.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.20;

import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
 * Argent and Safe Wallet (previously Gnosis Safe).
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        (address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
        return
            (error == ECDSA.RecoverError.NoError && recovered == signer) ||
            isValidERC1271SignatureNow(signer, hash, signature);
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}

File 15 of 24 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 16 of 24 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 17 of 24 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 18 of 24 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 19 of 24 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 20 of 24 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 21 of 24 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 22 of 24 : IFormStakingPool.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

/// @title Ztaking Pool Interface
/// @notice An interface containing externally accessible functions of the ZtakingPool contract
/// @dev The automatically generated public view functions for the state variables and mappings are not included in the interface
interface IZtakingPool {
    /*//////////////////////////////////////////////////////////////
                            Errors
    //////////////////////////////////////////////////////////////*/

    error SignerCannotBeZeroAddress(); //Thrown when proposed signer is the zero address
    error SignerAlreadySetToAddress(); //Thrown when proposed signer is already set
    error SignatureInvalid(); // Thrown when the migration signature is invalid
    error SignatureExpired(); // Thrown when the migration signature has expired
    error TokenCannotBeZeroAddress(); // Thrown when the specified token is the zero address
    error WETHCannotBeZeroAddress(); // Thrown when the specified token is the zero address
    error TokenAlreadyConfiguredWithState(); //Thrown if the token as already been enabled or disabled
    error DepositAmountCannotBeZero(); // Thrown if staker attempts to call deposit() with zero amount
    error WithdrawAmountCannotBeZero(); //Thrown if staker attempts to call withdraw() with zero amount
    error TokenNotAllowedForStaking(); // Thrown if staker attempts to stake unsupported token (or token disabled for staking)
    error UserDoesNotHaveStake(); //Thrown if the staker is attempting to migrate with no stake
    error MigratorCannotBeZeroAddress(); //Thrown if the provided migrator is the zero address
    error MigratorAlreadyAllowedOrBlocked(); //Thrown if attempting to block a migrator which has already been blocked or attempting to allow a migrator which is already allowed
    error MigratorBlocked(); //Thrown if the provided migrator contract has been blacklisted.
    error CannotDepositForZeroAddress(); //Thrown if caller tries to deposit on behalf of the zero address
    error CannotRenounceOwnership(); //Thrown if the renounceOwnership() function is called
    error DuplicateToken(); //Thrown when there is a duplicate in the provided token address array
    error TokenArrayCannotBeEmpty(); //Thrown when the provided token address array is empty

    /*//////////////////////////////////////////////////////////////
                            Staker Events
    //////////////////////////////////////////////////////////////*/

    ///@notice Emitted when a staker deposits/stakes a supported token into the Ztaking Pool
    ///@param eventId The unique event Id associated with the Deposit event
    ///@param depositor The address of the depositer/staker transfering funds to the Ztaking Pool
    ///@param token The address of the token deposited/staked into the pool
    ///@param amount The amount of token deposited/staked into the pool
    event Deposit(uint256 indexed eventId, address indexed depositor, address indexed token, uint256 amount);

    ///@notice Emitted when a staker withdraws a previously staked tokens from the Ztaking Pool
    ///@param eventId The unique event Id associated with the Withdraw event
    ///@param withdrawer The address of the staker withdrawing funds from the Ztaking Pool
    ///@param token The address of the token being withdrawn from the pool
    ///@param amount The amount of tokens withdrawn the pool
    event Withdraw(uint256 indexed eventId, address indexed withdrawer, address indexed token, uint256 amount);

    ///@notice Emitted when a staker migrates their tokens from the ZtakingPool to Zircuit.
    ///@param eventId The unique event Id associated with the Migrate event
    ///@param user The address of the staker migrating funds to Zircuit
    ///@param tokens The addresses of the tokens being being migrated from the ZtakingPool to Zircuit
    ///@param destination The address which the tokens will be transferred to on Zircuit
    ///@param migrator The address of the migrator contract which initially receives the migrated tokens
    ///@param amounts The amounts of each token migrated to Zircuit
    event Migrate(
        uint256 indexed eventId,
        address indexed user,
        address[] tokens,
        address destination,
        address migrator,
        uint256[] amounts
    );

    /*//////////////////////////////////////////////////////////////
                            Admin Events
    //////////////////////////////////////////////////////////////*/

    ///@notice Emitted when the required signer for the migration signature is changed
    ///@param newSigner The address of the new signer which must sign the migration signature
    event SignerChanged(address newSigner);

    ///@notice Emitted when a token has been enabled or disabled for staking
    ///@param token The address of the token which has been enabled/disabled for staking
    ///@param enabled Is true if the token is being enabled and false if the token is being disabled
    event TokenStakabilityChanged(address token, bool enabled);

    ///@notice Emitted when a migrator has been added or removed from the blocklist
    ///@param migrator The address of the migrator which has been added or removed from the blocklist
    ///@param blocked Is true if the migrator was added to the blocklist, and false if it was removed from the blocklist
    event BlocklistChanged(address migrator, bool blocked);

    /*//////////////////////////////////////////////////////////////
                            Staker Functions
    //////////////////////////////////////////////////////////////*/

    ///@notice Stake a specified amount of a particular supported token into the Ztaking Pool
    ///@param _token The token to deposit/stake in the Ztaking Pool
    ///@param _for The user to deposit/stake on behalf of
    ///@param _amount The amount of token to deposit/stake into the Ztaking Pool
    function depositFor(address _token, address _for, uint256 _amount) external;

    ///@notice Stake a specified amount of ether into the Ztaking Pool
    ///@param _for The user to deposit/stake on behalf of
    ///@dev the amount deposited is specified by msg.value
    function depositETHFor(address _for) external payable;

    ///@notice Withdraw a specified amount of a particular supported token previously staked into the Ztaking Pool
    ///@param _token The token to withdraw from the Ztaking Pool
    ///@param _amount The amount of token to withdraw from the Ztaking Pool
    function withdraw(address _token, uint256 _amount) external;

    ///@notice Migrate the staked tokens for the caller from the Ztaking Pool to Zircuit
    ///@dev called by the staker
    ///@param _tokens The tokens to migrate to Zircuit from the Ztaking Pool
    ///@param _migratorContract The migrator contract which will initially receive the migrated tokens before moving them to Zircuit
    ///@param _destination The address which will receive the migrated tokens on Zircuit
    ///@param _signatureExpiry The timestamp at which the signature in _authorizationSignatureFromZircuit expires
    ///@param _authorizationSignatureFromZircuit The authorization signature which is signed by the zircuit signer and indicates the correct migrator contract
    function migrate(
        address[] calldata _tokens,
        address _migratorContract,
        address _destination,
        uint256 _signatureExpiry,
        bytes memory _authorizationSignatureFromZircuit
    ) external;

    ///@notice Migrate the staked tokens for the caller from the Ztaking Pool to Zircuit
    ///@param _user The staker to migrate tokens for
    ///@param _tokens The tokens to migrate to Zircuit from the Ztaking Pool
    ///@param _migratorContract The migrator contract which will initially receive the migrated tokens before moving them to Zircuit
    ///@param _destination The address which will receive the migrated tokens on Zircuit
    ///@param _signatureExpiry The timestamp at which the signature in _authorizationSignatureFromZircuit expires
    ///@param _stakerSignature The signature from the staker authorizing the migration of their tokens
    function migrateWithSig(
        address _user,
        address[] calldata _tokens,
        address _migratorContract,
        address _destination,
        uint256 _signatureExpiry,
        bytes memory _stakerSignature
    ) external;

    /*//////////////////////////////////////////////////////////////
                            Admin Functions
    //////////////////////////////////////////////////////////////*/

    ///@notice Set/Change the required signer for the migration signature (_authorizationSignatureFromZircuit in the migrate() function)
    ///@param _signer The address of the new signer for the migration signature
    ///@dev Only callable by the owner
    function setZircuitSigner(address _signer) external;

    ///@notice Enable or disable the specified token for staking
    ///@param _token The token to enable or disable for staking
    ///@param _canStake If true, then staking is to be enabled. If false, then staking will be disabled.
    ///@dev Only callable by the owner
    function setStakable(address _token, bool _canStake) external;

    ///@notice Add or remove the migrator to/from the blocklist, such that it can no longer be used from migrating tokens from the staking pool
    ///@param _migrator The migrator contract to add or remove from the blocklist
    ///@param _blocklisted If true, then add the migrator to the blocklist. If false, then remove the migrator from the blocklist.
    ///@dev Only callable by the owner
    function blockMigrator(address _migrator, bool _blocklisted) external;

    ///@notice Pause further staking through the deposit function.
    ///@dev Only callable by the owner. Withdrawals and migrations will still be possible when paused
    function pause() external;

    ///@notice Unpause staking allowing the deposit function to be used again
    ///@dev Only callable by the owner
    function unpause() external;
}

File 23 of 24 : IMigrator.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

/// @title Migrator Interface
/// @notice Interface for the Migrator contract called by the Ztaking Pool's migrate() function
interface IMigrator {
    ///@notice Function called by the Ztaking Pool to facilitate migration of staked tokens from the Ztaking Pool to Form
    ///@param _user The address of the user whose staked funds are being migrated to Form
    ///@param _tokens The tokens being migrated to Form from the Ztaking Pool
    ///@param _destination The address which will be credited the tokens on Form
    ///@param _amounts The amounts of each token to be migrated to Form for the _user
    function migrate(
        address _user,
        address[] calldata _tokens,
        address _destination,
        uint256[] calldata _amounts
    ) external;
}

File 24 of 24 : IWETH.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IWETH is IERC20 {
    function deposit() external payable;

    function withdraw(uint256 wad) external;
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_signer","type":"address"},{"internalType":"address[]","name":"_tokensAllowed","type":"address[]"},{"internalType":"address","name":"_weth","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"CannotDepositForZeroAddress","type":"error"},{"inputs":[],"name":"CannotRenounceOwnership","type":"error"},{"inputs":[],"name":"DepositAmountCannotBeZero","type":"error"},{"inputs":[],"name":"DuplicateToken","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"MigratorAlreadyAllowedOrBlocked","type":"error"},{"inputs":[],"name":"MigratorBlocked","type":"error"},{"inputs":[],"name":"MigratorCannotBeZeroAddress","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SignatureExpired","type":"error"},{"inputs":[],"name":"SignatureInvalid","type":"error"},{"inputs":[],"name":"SignerAlreadySetToAddress","type":"error"},{"inputs":[],"name":"SignerCannotBeZeroAddress","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TokenAlreadyConfiguredWithState","type":"error"},{"inputs":[],"name":"TokenArrayCannotBeEmpty","type":"error"},{"inputs":[],"name":"TokenCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"TokenNotAllowedForStaking","type":"error"},{"inputs":[],"name":"UserDoesNotHaveStake","type":"error"},{"inputs":[],"name":"WETHCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"WithdrawAmountCannotBeZero","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"migrator","type":"address"},{"indexed":false,"internalType":"bool","name":"blocked","type":"bool"}],"name":"BlocklistChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"eventId","type":"uint256"},{"indexed":true,"internalType":"address","name":"depositor","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"eventId","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"address","name":"destination","type":"address"},{"indexed":false,"internalType":"address","name":"migrator","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"Migrate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"TokenStakabilityChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"eventId","type":"uint256"},{"indexed":true,"internalType":"address","name":"withdrawer","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"balance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_migrator","type":"address"},{"internalType":"bool","name":"_blocklisted","type":"bool"}],"name":"blockMigrator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_for","type":"address"}],"name":"depositETHFor","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_for","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"depositFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokens","type":"address[]"},{"internalType":"address","name":"_migratorContract","type":"address"},{"internalType":"address","name":"_destination","type":"address"},{"internalType":"uint256","name":"_signatureExpiry","type":"uint256"},{"internalType":"bytes","name":"_authorizationSignatureFromZircuit","type":"bytes"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"address[]","name":"_tokens","type":"address[]"},{"internalType":"address","name":"_migratorContract","type":"address"},{"internalType":"address","name":"_destination","type":"address"},{"internalType":"uint256","name":"_signatureExpiry","type":"uint256"},{"internalType":"bytes","name":"_stakerSignature","type":"bytes"}],"name":"migrateWithSig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"migratorBlocklist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"bool","name":"_canStake","type":"bool"}],"name":"setStakable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"name":"setZircuitSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokenAllowlist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"zircuitSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

Deployed Bytecode

0x6080604052600436106101355760003560e01c8063a5a21fdf116100ab578063e3c342161161006f578063e3c3421614610398578063e63b81a6146103b8578063f03639e3146103d8578063f2fde38b146103f8578063f3fef3a314610418578063f6203e351461043857600080fd5b8063a5a21fdf146102e2578063b203bb9914610302578063b3db428b1461033a578063da3a3a881461035a578063e30c39781461037a57600080fd5b806379ba5097116100fd57806379ba5097146101fe5780637ecebe00146102135780638135369a146102575780638456cb591461028757806384b0196e1461029c5780638da5cb5b146102c457600080fd5b80633f4ba83a1461013a57806344e7cb13146101515780635c975abb1461018e578063715018a6146101b957806379a26cd0146101ce575b600080fd5b34801561014657600080fd5b5061014f61044b565b005b34801561015d57600080fd5b50600954610171906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b34801561019a57600080fd5b50600154600160a01b900460ff165b6040519015158152602001610185565b3480156101c557600080fd5b5061014f610465565b3480156101da57600080fd5b506101a96101e9366004611b61565b60076020526000908152604090205460ff1681565b34801561020a57600080fd5b5061014f61047e565b34801561021f57600080fd5b5061024961022e366004611b61565b6001600160a01b031660009081526004602052604090205490565b604051908152602001610185565b34801561026357600080fd5b506101a9610272366004611b61565b60056020526000908152604090205460ff1681565b34801561029357600080fd5b5061014f6104c7565b3480156102a857600080fd5b506102b16104df565b6040516101859796959493929190611c08565b3480156102d057600080fd5b506000546001600160a01b0316610171565b3480156102ee57600080fd5b5061014f6102fd366004611cda565b610525565b34801561030e57600080fd5b5061024961031d366004611df4565b600660209081526000928352604080842090915290825290205481565b34801561034657600080fd5b5061014f610355366004611e27565b61065e565b34801561036657600080fd5b5061014f610375366004611b61565b610799565b34801561038657600080fd5b506001546001600160a01b0316610171565b3480156103a457600080fd5b5061014f6103b3366004611e63565b61084b565b3480156103c457600080fd5b5061014f6103d3366004611f3c565b610977565b3480156103e457600080fd5b5061014f6103f3366004611f3c565b610a4b565b34801561040457600080fd5b5061014f610413366004611b61565b610b17565b34801561042457600080fd5b5061014f610433366004611f73565b610b88565b61014f610446366004611b61565b610c4e565b610453610e46565b61045b610e73565b610463610e9d565b565b6040516377aeb0ad60e01b815260040160405180910390fd5b60015433906001600160a01b031681146104bb5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b6104c481610ef2565b50565b6104cf610e46565b6104d7610f0b565b610463610f36565b6000606080600080600060606104f3610f79565b6104fb610fab565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b61052d610e46565b60007fe08f530a0e71c7f642d765489160fd44eac817278745c067606534c347d9a2ec8886868a8a604051602001610566929190611f9d565b60405160208183030381529060405280519060200120876105a48e6001600160a01b0316600090815260046020526040902080546001810190915590565b6040805160208101989098526001600160a01b0396871690880152938516606087015293909116608085015260a084015260c083019190915260e082015261010001604051602081830303815290604052805190602001209050600061060982610fd8565b905061061689828561100b565b610633576040516337e8456b60e01b815260040160405180910390fd5b50506000610644888888868961106f565b90506106548885878a8a86611218565b5050505050505050565b610666610f0b565b80600003610687576040516318bb758960e11b815260040160405180910390fd5b6001600160a01b0382166106ad5760405162bbe08560e31b815260040160405180910390fd5b6001600160a01b03831660009081526005602052604090205460ff166106e65760405163072b889f60e11b815260040160405180910390fd5b6001600160a01b0380841660009081526006602090815260408083209386168352929052908120805483929061071d908490611ff3565b92505081905550826001600160a01b0316826001600160a01b031660086000815461074790612006565b91829055506040518481527f2c0f148b435140de488c1b34647f1511c646f7077e87007bacf22ef9977a16d89060200160405180910390a46107946001600160a01b03841633308461149e565b505050565b6107a1610e46565b6001600160a01b0381166107c8576040516367db084560e11b815260040160405180910390fd5b6009546001600160a01b03908116908216036107f75760405163c0af9fdf60e01b815260040160405180910390fd5b600980546001600160a01b0319166001600160a01b0383169081179091556040519081527f5719a5656c5cfdaafa148ecf366fd3b0a7fae06449ce2a46225977fb7417e29d9060200160405180910390a150565b600061085a338989878a61106f565b6040516bffffffffffffffffffffffff19606089811b821660208401526034830188905230901b16605482015246606882015290915060009060880160408051601f198184030181529082905280516020918201207f19457468657265756d205369676e6564204d6573736167653a0a33320000000091830191909152603c820152605c0160408051601f198184030181528282528051602091820120600954601f88018390048302850183019093528684529350610941926001600160a01b03909216918491889088908190840183828082843760009201919091525061100b92505050565b61095e576040516337e8456b60e01b815260040160405180910390fd5b61096c3387898c8c87611218565b505050505050505050565b61097f610e46565b6001600160a01b0382166109a657604051635f5d339960e01b815260040160405180910390fd5b6001600160a01b03821660009081526005602052604090205481151560ff9091161515036109e757604051637565bf8f60e11b815260040160405180910390fd5b6001600160a01b038216600081815260056020908152604091829020805460ff19168515159081179091558251938452908301527f303d37f32762627f23f474bb09535b3c1c7cb4f0f75c8960c42512b046ee24a891015b60405180910390a15050565b610a53610e46565b6001600160a01b038216610a7a57604051631a86f04560e01b815260040160405180910390fd5b6001600160a01b03821660009081526007602052604090205481151560ff909116151503610abb57604051631e5a976960e31b815260040160405180910390fd5b6001600160a01b038216600081815260076020908152604091829020805460ff19168515159081179091558251938452908301527f939ba97d9885a19f5539df8bc7d0698b79b1361793009861943fdd98060480339101610a3f565b610b1f610e46565b600180546001600160a01b0383166001600160a01b03199091168117909155610b506000546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b80600003610ba95760405163b8fc0f3b60e01b815260040160405180910390fd5b6001600160a01b038216600090815260066020908152604080832033845290915281208054839290610bdc90849061201f565b9091555050600880546001600160a01b038416913391600090610bfe90612006565b91829055506040518481527ffeb2000dca3e617cd6f3a8bbb63014bb54a124aac6ccbf73ee7229b4cd01f1209060200160405180910390a4610c4a6001600160a01b038316338361150b565b5050565b610c56610f0b565b34600003610c77576040516318bb758960e11b815260040160405180910390fd5b6001600160a01b038116610c9d5760405162bbe08560e31b815260040160405180910390fd5b6001600160a01b037f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc21660009081526005602052604090205460ff16610cf65760405163072b889f60e11b815260040160405180910390fd5b6001600160a01b037f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc28116600090815260066020908152604080832093851683529290529081208054349290610d4d908490611ff3565b925050819055507f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b0316816001600160a01b0316600860008154610d9790612006565b91829055506040513481527f2c0f148b435140de488c1b34647f1511c646f7077e87007bacf22ef9977a16d89060200160405180910390a47f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b158015610e2a57600080fd5b505af1158015610e3e573d6000803e3d6000fd5b505050505050565b6000546001600160a01b031633146104635760405163118cdaa760e01b81523360048201526024016104b2565b600154600160a01b900460ff1661046357604051638dfc202b60e01b815260040160405180910390fd5b610ea5610e73565b6001805460ff60a01b191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b600180546001600160a01b03191690556104c48161153c565b600154600160a01b900460ff16156104635760405163d93c066560e01b815260040160405180910390fd5b610f3e610f0b565b6001805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610ed53390565b6060610fa67f5a74616b696e67506f6f6c00000000000000000000000000000000000000000b600261158c565b905090565b6060610fa67f3100000000000000000000000000000000000000000000000000000000000001600361158c565b6000611005610fe5611638565b8360405161190160f01b8152600281019290925260228201526042902090565b92915050565b600080600061101a8585611763565b509092509050600081600381111561103457611034612032565b1480156110525750856001600160a01b0316826001600160a01b0316145b8061106357506110638686866117b0565b925050505b9392505050565b60608360008190036110945760405163e78703a360e01b815260040160405180910390fd5b8067ffffffffffffffff8111156110ad576110ad611cc4565b6040519080825280602002602001820160405280156110d6578160200160208202803683370190505b50915060005b818110156111b357600660008888848181106110fa576110fa612048565b905060200201602081019061110f9190611b61565b6001600160a01b03166001600160a01b031681526020019081526020016000206000896001600160a01b03166001600160a01b031681526020019081526020016000205483828151811061116557611165612048565b60200260200101818152505082818151811061118357611183612048565b60200260200101516000036111ab5760405163a809389f60e01b815260040160405180910390fd5b6001016110dc565b508342106111d457604051630819bdcd60e01b815260040160405180910390fd5b6001600160a01b03831660009081526007602052604090205460ff161561120e57604051639997d66560e01b815260040160405180910390fd5b5095945050505050565b8160005b818110156112f7576006600086868481811061123a5761123a612048565b905060200201602081019061124f9190611b61565b6001600160a01b03908116825260208083019390935260409182016000908120918c16815292528120549003611298576040516323271fb560e11b815260040160405180910390fd5b6000600660008787858181106112b0576112b0612048565b90506020020160208101906112c59190611b61565b6001600160a01b03908116825260208083019390935260409182016000908120918d168152925290205560010161121c565b50866001600160a01b031660086000815461131190612006565b9190508190557f8ec7c0970f810f90b2e926cd4ee4f32efff0ef16fb5e08617c11b9fad14dfc0086868a8a8860405161134e95949392919061209a565b60405180910390a360005b8181101561142e5784848281811061137357611373612048565b90506020020160208101906113889190611b61565b6001600160a01b031663095ea7b3878584815181106113a9576113a9612048565b60200260200101516040518363ffffffff1660e01b81526004016113e29291906001600160a01b03929092168252602082015260400190565b6020604051808303816000875af1158015611401573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061142591906120e3565b50600101611359565b506040516355e663bf60e11b81526001600160a01b0386169063abccc77e90611463908a90889088908c908990600401612100565b600060405180830381600087803b15801561147d57600080fd5b505af1158015611491573d6000803e3d6000fd5b5050505050505050505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526115059186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b03838183161783525050505061188b565b50505050565b6040516001600160a01b0383811660248301526044820183905261079491859182169063a9059cbb906064016114d3565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b606060ff83146115a65761159f836118ee565b9050611005565b8180546115b29061214a565b80601f01602080910402602001604051908101604052809291908181526020018280546115de9061214a565b801561162b5780601f106116005761010080835404028352916020019161162b565b820191906000526020600020905b81548152906001019060200180831161160e57829003601f168201915b5050505050905092915050565b6000306001600160a01b037f000000000000000000000000fa70af4af0cc7cc4d767ac6808c7e56375844d711614801561169157507f000000000000000000000000000000000000000000000000000000000000000146145b156116bb57507f23a76b543373824a814ef27ee0a08575b8cdef3ad199b7b28c0adad533fa04d690565b610fa6604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fcf7936818770c7c65596ab2682c0a2826f5f1e1aaa24c0b6acd2ee27ef08e64c918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b6000806000835160410361179d5760208401516040850151606086015160001a61178f8882858561192d565b9550955095505050506117a9565b50508151600091506002905b9250925092565b6000806000856001600160a01b031685856040516024016117d2929190612184565b60408051601f198184030181529181526020820180516001600160e01b0316630b135d3f60e11b1790525161180791906121a5565b600060405180830381855afa9150503d8060008114611842576040519150601f19603f3d011682016040523d82523d6000602084013e611847565b606091505b509150915081801561185b57506020815110155b801561106357508051630b135d3f60e11b9061188090830160209081019084016121c1565b149695505050505050565b60006118a06001600160a01b038416836119fc565b905080516000141580156118c55750808060200190518101906118c391906120e3565b155b1561079457604051635274afe760e01b81526001600160a01b03841660048201526024016104b2565b606060006118fb83611a0a565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561196857506000915060039050826119f2565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156119bc573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166119e8575060009250600191508290506119f2565b9250600091508190505b9450945094915050565b606061106883836000611a32565b600060ff8216601f81111561100557604051632cd44ac360e21b815260040160405180910390fd5b606081471015611a575760405163cd78605960e01b81523060048201526024016104b2565b600080856001600160a01b03168486604051611a7391906121a5565b60006040518083038185875af1925050503d8060008114611ab0576040519150601f19603f3d011682016040523d82523d6000602084013e611ab5565b606091505b5091509150611063868383606082611ad557611ad082611b1c565b611068565b8151158015611aec57506001600160a01b0384163b155b15611b1557604051639996b31560e01b81526001600160a01b03851660048201526024016104b2565b5080611068565b805115611b2c5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b80356001600160a01b0381168114611b5c57600080fd5b919050565b600060208284031215611b7357600080fd5b61106882611b45565b60005b83811015611b97578181015183820152602001611b7f565b50506000910152565b60008151808452611bb8816020860160208601611b7c565b601f01601f19169290920160200192915050565b60008151808452602080850194506020840160005b83811015611bfd57815187529582019590820190600101611be1565b509495945050505050565b60ff60f81b8816815260e060208201526000611c2760e0830189611ba0565b8281036040840152611c398189611ba0565b606084018890526001600160a01b038716608085015260a0840186905283810360c08501529050611c6a8185611bcc565b9a9950505050505050505050565b60008083601f840112611c8a57600080fd5b50813567ffffffffffffffff811115611ca257600080fd5b6020830191508360208260051b8501011115611cbd57600080fd5b9250929050565b634e487b7160e01b600052604160045260246000fd5b600080600080600080600060c0888a031215611cf557600080fd5b611cfe88611b45565b9650602088013567ffffffffffffffff80821115611d1b57600080fd5b611d278b838c01611c78565b9098509650869150611d3b60408b01611b45565b9550611d4960608b01611b45565b945060808a0135935060a08a0135915080821115611d6657600080fd5b818a0191508a601f830112611d7a57600080fd5b813581811115611d8c57611d8c611cc4565b604051601f8201601f19908116603f01168101908382118183101715611db457611db4611cc4565b816040528281528d6020848701011115611dcd57600080fd5b82602086016020830137600060208483010152809550505050505092959891949750929550565b60008060408385031215611e0757600080fd5b611e1083611b45565b9150611e1e60208401611b45565b90509250929050565b600080600060608486031215611e3c57600080fd5b611e4584611b45565b9250611e5360208501611b45565b9150604084013590509250925092565b600080600080600080600060a0888a031215611e7e57600080fd5b873567ffffffffffffffff80821115611e9657600080fd5b611ea28b838c01611c78565b9099509750879150611eb660208b01611b45565b9650611ec460408b01611b45565b955060608a0135945060808a0135915080821115611ee157600080fd5b818a0191508a601f830112611ef557600080fd5b813581811115611f0457600080fd5b8b6020828501011115611f1657600080fd5b60208301945080935050505092959891949750929550565b80151581146104c457600080fd5b60008060408385031215611f4f57600080fd5b611f5883611b45565b91506020830135611f6881611f2e565b809150509250929050565b60008060408385031215611f8657600080fd5b611f8f83611b45565b946020939093013593505050565b60008184825b85811015611fd2576001600160a01b03611fbc83611b45565b1683526020928301929190910190600101611fa3565b509095945050505050565b634e487b7160e01b600052601160045260246000fd5b8082018082111561100557611005611fdd565b60006001820161201857612018611fdd565b5060010190565b8181038181111561100557611005611fdd565b634e487b7160e01b600052602160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b8183526000602080850194508260005b85811015611bfd576001600160a01b0361208783611b45565b168752958201959082019060010161206e565b6080815260006120ae60808301878961205e565b6001600160a01b0386811660208501528516604084015282810360608401526120d78185611bcc565b98975050505050505050565b6000602082840312156120f557600080fd5b815161106881611f2e565b600060018060a01b0380881683526080602084015261212360808401878961205e565b8186166040850152838103606085015261213d8186611bcc565b9998505050505050505050565b600181811c9082168061215e57607f821691505b60208210810361217e57634e487b7160e01b600052602260045260246000fd5b50919050565b82815260406020820152600061219d6040830184611ba0565b949350505050565b600082516121b7818460208701611b7c565b9190910192915050565b6000602082840312156121d357600080fd5b505191905056fea26469706673582212207db1c47aca40b17c87e27870f77e73ea6b5e8e77b483b8e39d4750f6e341330364736f6c63430008180033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Chain Token Portfolio % Price Amount Value
ETH44.33%$3,442.5960.6834$208,908.08
ETH14.13%$3,552.5518.7426$66,584
ETH10.74%$3,642.1613.8963$50,612.7
ETH9.11%$3,552.6812.0875$42,942.88
ETH4.12%$0.65653129,570.0735$19,413.67
ETH4.04%$4,083.94.6591$19,027.3
ETH3.45%$3,504.64.636$16,247.28
ETH1.91%$0.000019482,330,439.7777$9,014.76
ETH1.68%$3,473.282.2728$7,894.02
ETH1.08%$0.0000022,507,858,415.6819$5,083.17
ETH0.78%$4,106.170.897$3,683.19
ETH0.77%$3,443.31.0546$3,631.28
ETH0.37%$0.9999771,759.6837$1,759.64
ETH0.24%$11,128.5681$1,128.57
ETH0.12%$99,2430.00585$580.57
ETH0.08%$99,5570.00368175$366.54
ETH0.06%$99,8100.00300811$300.24
ETH0.02%$0.000172434,333.6774$74.49
ETH0.01%$0.0000222,846,705.2154$63.6
ETH<0.01%$95,670.180.00017339$16.59
ETH<0.01%<$0.00000171,950,038.9162$14.71
ETH<0.01%$0.00077615,227.8926$11.82
BSC2.95%$1.867,452.9487$13,892.7
BSC<0.01%$0.000012152,016.7871$1.87
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.