Feature Tip: Add private address tag to any address under My Name Tag !
More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
0xb0f76ce9069ba889dd4b325b38aecb6e30f817624f4127b3f06475f9ffb9e9a7 | Claim | (pending) | 14 hrs ago | IN | 0 ETH | (Pending) | |||
0xbab5bdf984631d439aa25e822511a10acd1db03733c0c7339e5c707f68efecbc | Claim | (pending) | 12 days ago | IN | 0 ETH | (Pending) | |||
0xd832c815a29ad8e7701a13383550c998289b9505c91733da6937696b092d2eb1 | Claim | (pending) | 12 days ago | IN | 0 ETH | (Pending) | |||
0xf5ef974c1cb16c0f4da2e1918400dca47c2865bb650d3bd548ae13343086f8ef | Claim | (pending) | 12 days ago | IN | 0 ETH | (Pending) | |||
0x3f9a71a67e695763202ca36ab6b21db6bfed5642cfc1a218b4532b138e15c570 | Claim | (pending) | 12 days ago | IN | 0 ETH | (Pending) | |||
Claim | 22095555 | 36 mins ago | IN | 0 ETH | 0.000125 | ||||
Claim | 22095424 | 1 hr ago | IN | 0 ETH | 0.00015435 | ||||
Claim | 22095405 | 1 hr ago | IN | 0 ETH | 0.00016037 | ||||
Claim | 22095399 | 1 hr ago | IN | 0 ETH | 0.00015047 | ||||
Claim | 22095326 | 1 hr ago | IN | 0 ETH | 0.00008264 | ||||
Claim | 22095312 | 1 hr ago | IN | 0 ETH | 0.00013696 | ||||
Claim | 22095305 | 1 hr ago | IN | 0 ETH | 0.00013725 | ||||
Claim | 22095302 | 1 hr ago | IN | 0 ETH | 0.00013679 | ||||
Claim | 22095291 | 1 hr ago | IN | 0 ETH | 0.00013365 | ||||
Claim | 22095226 | 1 hr ago | IN | 0 ETH | 0.00007481 | ||||
Claim | 22095113 | 2 hrs ago | IN | 0 ETH | 0.00015782 | ||||
Claim | 22095065 | 2 hrs ago | IN | 0 ETH | 0.00013087 | ||||
Claim | 22095057 | 2 hrs ago | IN | 0 ETH | 0.00013632 | ||||
Claim | 22095043 | 2 hrs ago | IN | 0 ETH | 0.00013651 | ||||
Claim | 22094931 | 2 hrs ago | IN | 0 ETH | 0.00013356 | ||||
Claim | 22094916 | 2 hrs ago | IN | 0 ETH | 0.0001323 | ||||
Claim | 22094760 | 3 hrs ago | IN | 0 ETH | 0.00011681 | ||||
Claim | 22094711 | 3 hrs ago | IN | 0 ETH | 0.00013206 | ||||
Claim | 22094204 | 5 hrs ago | IN | 0 ETH | 0.00008437 | ||||
Claim | 22093531 | 7 hrs ago | IN | 0 ETH | 0.00013206 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Distributor
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; import "@solady/utils/MerkleProofLib.sol"; import "@solady/utils/ECDSA.sol"; import "@solady/utils/FixedPointMathLib.sol"; import "@openzeppelin/contracts/access/Ownable2Step.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/utils/Pausable.sol"; import "./interfaces/IStaking.sol"; // ____ _ _ // / ___| (_) __ _ _ _ ___ // | | | | |/ _` | | | |/ _ \ // | |___| | | (_| | |_| | __/ // \____|_|_|\__, |\__,_|\___| _ _ // | _ \(_)___| |_|_ __(_) |__ _ _| |_ ___ _ __ / | // | | | | / __| __| '__| | '_ \| | | | __/ _ \| '__| | | // | |_| | \__ \ |_| | | | |_) | |_| | || (_) | | | | // |____/|_|___/\__|_| |_|_.__/ \__,_|\__\___/|_| |_| /// @title Distributor1 /// @notice Clique Airdrop contract (Mekle + ECDSA) /// @author Clique (@Clique2046) /// @author Eillo (@0xEillo) contract Distributor is Ownable2Step, Pausable { using SafeERC20 for IERC20; using FixedPointMathLib for uint256; // token to be airdroppped address public immutable token; // address signing the claims address public signer; // root of the merkle tree bytes32 public claimRoot; // staking contract address public immutable staking; // percentage of tokens to stake (in WAD, where 1e18 = 100%) uint256 public stakePercentage; // mapping of addresses to whether they have claimed mapping(address => bool) public claimed; // errors error InsufficientBalance(); error AlreadyClaimed(); error InvalidSignature(); error InvalidMerkleProof(); error UninitializedStaking(); error InvalidPercentage(); event AirdropClaimed(address indexed account, uint256 amount); event StakePercentageUpdated(uint256 newPercentage); /// @notice Construct a new Claim contract /// @param _signer address that can sign messages /// @param _token address of the token that will be claimed /// @param _staking address of the staking contract constructor( address _signer, address _token, address _staking ) Ownable(msg.sender) { signer = _signer; token = _token; staking = _staking; stakePercentage = 0.5e18; // 50% by default _pause(); } /// @notice Set new signer which would revoke the previous one /// @param _signer address that can sign messages function setSigner(address _signer) external onlyOwner { signer = _signer; } /// @notice Set the claim root /// @param _claimRoot root of the merkle tree function setClaimRoot(bytes32 _claimRoot) external onlyOwner { claimRoot = _claimRoot; } /// @notice Withdraw tokens from the contract /// @param receiver address to receive the tokens /// @param amount amount of tokens to withdraw function withdrawTokens( address receiver, uint256 amount ) external onlyOwner { IERC20(token).safeTransfer(receiver, amount); } function toggleActive() external onlyOwner { if (paused()) { _unpause(); } else { _pause(); } } /// @notice Set the percentage of tokens to be staked /// @param _percentage percentage in WAD format (1e18 = 100%) function setStakePercentage(uint256 _percentage) external onlyOwner { if (_percentage > 1e18) revert InvalidPercentage(); stakePercentage = _percentage; emit StakePercentageUpdated(_percentage); } /// @notice Claim airdrop tokens. Checks for both merkle proof // and signature validation /// @param _proof merkle proof of the claim /// @param _signature signature of the claim /// @param _amount amount of tokens to claim /// @param _lockOnly whether the user has claimed the airdrop function claim( bytes32[] calldata _proof, bytes calldata _signature, uint256 _amount, bool _lockOnly ) external whenNotPaused { if (IERC20(token).balanceOf(address(this)) < _amount) { revert InsufficientBalance(); } if (claimed[msg.sender]) revert AlreadyClaimed(); if (staking == address(0)) revert UninitializedStaking(); claimed[msg.sender] = true; uint256 _stakingAmount = _amount.mulWad(stakePercentage); // Calculate stake amount based on percentage _rootCheck(_proof, _amount, _lockOnly); bytes32 messageHash = keccak256( abi.encodePacked(msg.sender, _amount, address(this), block.chainid) ); _signatureCheck(messageHash, _signature); IERC20(token).approve(staking, _stakingAmount); IStaking(staking).stake(_stakingAmount, msg.sender); if (_amount - _stakingAmount > 0 && !_lockOnly) { IERC20(token).safeTransfer(msg.sender, _amount - _stakingAmount); } emit AirdropClaimed(msg.sender, _amount); } function unlock( uint256 _reductionBlock, bytes calldata _signature ) external whenNotPaused { bytes32 messageHash = keccak256( abi.encodePacked( msg.sender, _reductionBlock, address(this), block.chainid ) ); _signatureCheck(messageHash, _signature); IStaking.Stake memory stake = IStaking(staking).getStakeInfo( msg.sender ); IStaking(staking).unstake(stake.amount, _reductionBlock, msg.sender); } /// @notice Internal function to check the merkle proof /// @param _proof merkle proof of the claim /// @param _amount amount of tokens to claim /// @param _lockOnly whether the user has claimed the airdrop function _rootCheck( bytes32[] calldata _proof, uint256 _amount, bool _lockOnly ) internal view { bytes32 leaf = keccak256(abi.encodePacked(msg.sender, _amount, _lockOnly)); if (!MerkleProofLib.verify(_proof, claimRoot, leaf)) { revert InvalidMerkleProof(); } } /// @notice Internal function to check the signature /// @param _messageHash msg to be verified /// @param _signature signature of the msg function _signatureCheck( bytes32 _messageHash, bytes calldata _signature ) internal view { if (_signature.length == 0) revert InvalidSignature(); bytes32 prefixedHash = ECDSA.toEthSignedMessageHash(_messageHash); address recoveredSigner = ECDSA.recoverCalldata( prefixedHash, _signature ); if (recoveredSigner != signer) revert InvalidSignature(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Gas optimized verification of proof of inclusion for a leaf in a Merkle tree. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol) library MerkleProofLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MERKLE PROOF VERIFICATION OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`. function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool isValid) { /// @solidity memory-safe-assembly assembly { if mload(proof) { // Initialize `offset` to the offset of `proof` elements in memory. let offset := add(proof, 0x20) // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(offset, shl(5, mload(proof))) // Iterate over proof elements to compute root hash. for {} 1 {} { // Slot of `leaf` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(leaf, mload(offset))) // Store elements to hash contiguously in scratch space. // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes. mstore(scratch, leaf) mstore(xor(scratch, 0x20), mload(offset)) // Reuse `leaf` to store the hash to reduce stack operations. leaf := keccak256(0x00, 0x40) offset := add(offset, 0x20) if iszero(lt(offset, end)) { break } } } isValid := eq(leaf, root) } } /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`. function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool isValid) { /// @solidity memory-safe-assembly assembly { if proof.length { // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(proof.offset, shl(5, proof.length)) // Initialize `offset` to the offset of `proof` in the calldata. let offset := proof.offset // Iterate over proof elements to compute root hash. for {} 1 {} { // Slot of `leaf` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(leaf, calldataload(offset))) // Store elements to hash contiguously in scratch space. // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes. mstore(scratch, leaf) mstore(xor(scratch, 0x20), calldataload(offset)) // Reuse `leaf` to store the hash to reduce stack operations. leaf := keccak256(0x00, 0x40) offset := add(offset, 0x20) if iszero(lt(offset, end)) { break } } } isValid := eq(leaf, root) } } /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`, /// given `proof` and `flags`. /// /// Note: /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length` /// will always return false. /// - The sum of the lengths of `proof` and `leaves` must never overflow. /// - Any non-zero word in the `flags` array is treated as true. /// - The memory offset of `proof` must be non-zero /// (i.e. `proof` is not pointing to the scratch space). function verifyMultiProof( bytes32[] memory proof, bytes32 root, bytes32[] memory leaves, bool[] memory flags ) internal pure returns (bool isValid) { // Rebuilds the root by consuming and producing values on a queue. // The queue starts with the `leaves` array, and goes into a `hashes` array. // After the process, the last element on the queue is verified // to be equal to the `root`. // // The `flags` array denotes whether the sibling // should be popped from the queue (`flag == true`), or // should be popped from the `proof` (`flag == false`). /// @solidity memory-safe-assembly assembly { // Cache the lengths of the arrays. let leavesLength := mload(leaves) let proofLength := mload(proof) let flagsLength := mload(flags) // Advance the pointers of the arrays to point to the data. leaves := add(0x20, leaves) proof := add(0x20, proof) flags := add(0x20, flags) // If the number of flags is correct. for {} eq(add(leavesLength, proofLength), add(flagsLength, 1)) {} { // For the case where `proof.length + leaves.length == 1`. if iszero(flagsLength) { // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`. isValid := eq(mload(xor(leaves, mul(xor(proof, leaves), proofLength))), root) break } // The required final proof offset if `flagsLength` is not zero, otherwise zero. let proofEnd := add(proof, shl(5, proofLength)) // We can use the free memory space for the queue. // We don't need to allocate, since the queue is temporary. let hashesFront := mload(0x40) // Copy the leaves into the hashes. // Sometimes, a little memory expansion costs less than branching. // Should cost less, even with a high free memory offset of 0x7d00. leavesLength := shl(5, leavesLength) for { let i := 0 } iszero(eq(i, leavesLength)) { i := add(i, 0x20) } { mstore(add(hashesFront, i), mload(add(leaves, i))) } // Compute the back of the hashes. let hashesBack := add(hashesFront, leavesLength) // This is the end of the memory for the queue. // We recycle `flagsLength` to save on stack variables (sometimes save gas). flagsLength := add(hashesBack, shl(5, flagsLength)) for {} 1 {} { // Pop from `hashes`. let a := mload(hashesFront) // Pop from `hashes`. let b := mload(add(hashesFront, 0x20)) hashesFront := add(hashesFront, 0x40) // If the flag is false, load the next proof, // else, pops from the queue. if iszero(mload(flags)) { // Loads the next proof. b := mload(proof) proof := add(proof, 0x20) // Unpop from `hashes`. hashesFront := sub(hashesFront, 0x20) } // Advance to the next flag. flags := add(flags, 0x20) // Slot of `a` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(a, b)) // Hash the scratch space and push the result onto the queue. mstore(scratch, a) mstore(xor(scratch, 0x20), b) mstore(hashesBack, keccak256(0x00, 0x40)) hashesBack := add(hashesBack, 0x20) if iszero(lt(hashesBack, flagsLength)) { break } } isValid := and( // Checks if the last value in the queue is same as the root. eq(mload(sub(hashesBack, 0x20)), root), // And whether all the proofs are used, if required. eq(proofEnd, proof) ) break } } } /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`, /// given `proof` and `flags`. /// /// Note: /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length` /// will always return false. /// - Any non-zero word in the `flags` array is treated as true. /// - The calldata offset of `proof` must be non-zero /// (i.e. `proof` is from a regular Solidity function with a 4-byte selector). function verifyMultiProofCalldata( bytes32[] calldata proof, bytes32 root, bytes32[] calldata leaves, bool[] calldata flags ) internal pure returns (bool isValid) { // Rebuilds the root by consuming and producing values on a queue. // The queue starts with the `leaves` array, and goes into a `hashes` array. // After the process, the last element on the queue is verified // to be equal to the `root`. // // The `flags` array denotes whether the sibling // should be popped from the queue (`flag == true`), or // should be popped from the `proof` (`flag == false`). /// @solidity memory-safe-assembly assembly { // If the number of flags is correct. for {} eq(add(leaves.length, proof.length), add(flags.length, 1)) {} { // For the case where `proof.length + leaves.length == 1`. if iszero(flags.length) { // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`. // forgefmt: disable-next-item isValid := eq( calldataload( xor(leaves.offset, mul(xor(proof.offset, leaves.offset), proof.length)) ), root ) break } // The required final proof offset if `flagsLength` is not zero, otherwise zero. let proofEnd := add(proof.offset, shl(5, proof.length)) // We can use the free memory space for the queue. // We don't need to allocate, since the queue is temporary. let hashesFront := mload(0x40) // Copy the leaves into the hashes. // Sometimes, a little memory expansion costs less than branching. // Should cost less, even with a high free memory offset of 0x7d00. calldatacopy(hashesFront, leaves.offset, shl(5, leaves.length)) // Compute the back of the hashes. let hashesBack := add(hashesFront, shl(5, leaves.length)) // This is the end of the memory for the queue. // We recycle `flagsLength` to save on stack variables (sometimes save gas). flags.length := add(hashesBack, shl(5, flags.length)) // We don't need to make a copy of `proof.offset` or `flags.offset`, // as they are pass-by-value (this trick may not always save gas). for {} 1 {} { // Pop from `hashes`. let a := mload(hashesFront) // Pop from `hashes`. let b := mload(add(hashesFront, 0x20)) hashesFront := add(hashesFront, 0x40) // If the flag is false, load the next proof, // else, pops from the queue. if iszero(calldataload(flags.offset)) { // Loads the next proof. b := calldataload(proof.offset) proof.offset := add(proof.offset, 0x20) // Unpop from `hashes`. hashesFront := sub(hashesFront, 0x20) } // Advance to the next flag offset. flags.offset := add(flags.offset, 0x20) // Slot of `a` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(a, b)) // Hash the scratch space and push the result onto the queue. mstore(scratch, a) mstore(xor(scratch, 0x20), b) mstore(hashesBack, keccak256(0x00, 0x40)) hashesBack := add(hashesBack, 0x20) if iszero(lt(hashesBack, flags.length)) { break } } isValid := and( // Checks if the last value in the queue is same as the root. eq(mload(sub(hashesBack, 0x20)), root), // And whether all the proofs are used, if required. eq(proofEnd, proof.offset) ) break } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EMPTY CALLDATA HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an empty calldata bytes32 array. function emptyProof() internal pure returns (bytes32[] calldata proof) { /// @solidity memory-safe-assembly assembly { proof.length := 0 } } /// @dev Returns an empty calldata bytes32 array. function emptyLeaves() internal pure returns (bytes32[] calldata leaves) { /// @solidity memory-safe-assembly assembly { leaves.length := 0 } } /// @dev Returns an empty calldata bool array. function emptyFlags() internal pure returns (bool[] calldata flags) { /// @solidity memory-safe-assembly assembly { flags.length := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Gas optimized ECDSA wrapper. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol) /// /// @dev Note: /// - The recovery functions use the ecrecover precompile (0x1). /// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure. /// This is for more safety by default. /// Use the `tryRecover` variants if you need to get the zero address back /// upon recovery failure instead. /// - As of Solady version 0.0.134, all `bytes signature` variants accept both /// regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures. /// See: https://eips.ethereum.org/EIPS/eip-2098 /// This is for calldata efficiency on smart accounts prevalent on L2s. /// /// WARNING! Do NOT directly use signatures as unique identifiers: /// - The recovery operations do NOT check if a signature is non-malleable. /// - Use a nonce in the digest to prevent replay attacks on the same contract. /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts. /// EIP-712 also enables readable signing of typed data for better user safety. /// - If you need a unique hash from a signature, please use the `canonicalHash` functions. library ECDSA { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The order of the secp256k1 elliptic curve. uint256 internal constant N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141; /// @dev `N/2 + 1`. Used for checking the malleability of the signature. uint256 private constant _HALF_N_PLUS_1 = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The signature is invalid. error InvalidSignature(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RECOVERY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function recover(bytes32 hash, bytes memory signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } { switch mload(signature) case 64 { let vs := mload(add(signature, 0x40)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`. mstore(0x60, mload(add(signature, 0x40))) // `s`. } default { continue } mstore(0x00, hash) mstore(0x40, mload(add(signature, 0x20))) // `r`. result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if returndatasize() { break } } } } /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function recoverCalldata(bytes32 hash, bytes calldata signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } { switch signature.length case 64 { let vs := calldataload(add(signature.offset, 0x20)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, calldataload(signature.offset)) // `r`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`. calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`. } default { continue } mstore(0x00, hash) result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if returndatasize() { break } } } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the EIP-2098 short form signature defined by `r` and `vs`. function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, r) mstore(0x60, shr(1, shl(1, vs))) // `s`. result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the signature defined by `v`, `r`, `s`. function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, and(v, 0xff)) mstore(0x40, r) mstore(0x60, s) result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* TRY-RECOVER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // WARNING! // These functions will NOT revert upon recovery failure. // Instead, they will return the zero address upon recovery failure. // It is critical that the returned address is NEVER compared against // a zero address (e.g. an uninitialized address variable). /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function tryRecover(bytes32 hash, bytes memory signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 {} { switch mload(signature) case 64 { let vs := mload(add(signature, 0x40)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`. mstore(0x60, mload(add(signature, 0x40))) // `s`. } default { break } mstore(0x00, hash) mstore(0x40, mload(add(signature, 0x20))) // `r`. pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. break } } } /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function tryRecoverCalldata(bytes32 hash, bytes calldata signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 {} { switch signature.length case 64 { let vs := calldataload(add(signature.offset, 0x20)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, calldataload(signature.offset)) // `r`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`. calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`. } default { break } mstore(0x00, hash) pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. break } } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the EIP-2098 short form signature defined by `r` and `vs`. function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, r) mstore(0x60, shr(1, shl(1, vs))) // `s`. pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the signature defined by `v`, `r`, `s`. function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, and(v, 0xff)) mstore(0x40, r) mstore(0x60, s) pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HASHING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an Ethereum Signed Message, created from a `hash`. /// This produces a hash corresponding to the one signed with the /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign) /// JSON-RPC method as part of EIP-191. function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, hash) // Store into scratch space for keccak256. mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes. result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`. } } /// @dev Returns an Ethereum Signed Message, created from `s`. /// This produces a hash corresponding to the one signed with the /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign) /// JSON-RPC method as part of EIP-191. /// Note: Supports lengths of `s` up to 999999 bytes. function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let sLength := mload(s) let o := 0x20 mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded. mstore(0x00, 0x00) // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`. for { let temp := sLength } 1 {} { o := sub(o, 1) mstore8(o, add(48, mod(temp, 10))) temp := div(temp, 10) if iszero(temp) { break } } let n := sub(0x3a, o) // Header length: `26 + 32 - o`. // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes. returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20)) mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header. result := keccak256(add(s, sub(0x20, n)), add(n, sLength)) mstore(s, sLength) // Restore the length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CANONICAL HASH FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // The following functions returns the hash of the signature in it's canonicalized format, // which is the 65-byte `abi.encodePacked(r, s, uint8(v))`, where `v` is either 27 or 28. // If `s` is greater than `N / 2` then it will be converted to `N - s` // and the `v` value will be flipped. // If the signature has an invalid length, or if `v` is invalid, // a uniquely corrupt hash will be returned. // These functions are useful for "poor-mans-VRF". /// @dev Returns the canonical hash of `signature`. function canonicalHash(bytes memory signature) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { let l := mload(signature) for {} 1 {} { mstore(0x00, mload(add(signature, 0x20))) // `r`. let s := mload(add(signature, 0x40)) let v := mload(add(signature, 0x41)) if eq(l, 64) { v := add(shr(255, s), 27) s := shr(1, shl(1, s)) } if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. break } // If the length is neither 64 nor 65, return a uniquely corrupted hash. if iszero(lt(sub(l, 64), 2)) { // `bytes4(keccak256("InvalidSignatureLength"))`. result := xor(keccak256(add(signature, 0x20), l), 0xd62f1ab2) } } } /// @dev Returns the canonical hash of `signature`. function canonicalHashCalldata(bytes calldata signature) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { for {} 1 {} { mstore(0x00, calldataload(signature.offset)) // `r`. let s := calldataload(add(signature.offset, 0x20)) let v := calldataload(add(signature.offset, 0x21)) if eq(signature.length, 64) { v := add(shr(255, s), 27) s := shr(1, shl(1, s)) } if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. break } // If the length is neither 64 nor 65, return a uniquely corrupted hash. if iszero(lt(sub(signature.length, 64), 2)) { calldatacopy(mload(0x40), signature.offset, signature.length) // `bytes4(keccak256("InvalidSignatureLength"))`. result := xor(keccak256(mload(0x40), signature.length), 0xd62f1ab2) } } } /// @dev Returns the canonical hash of `signature`. function canonicalHash(bytes32 r, bytes32 vs) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { mstore(0x00, r) // `r`. let v := add(shr(255, vs), 27) let s := shr(1, shl(1, vs)) mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the canonical hash of `signature`. function canonicalHash(uint8 v, bytes32 r, bytes32 s) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { mstore(0x00, r) // `r`. if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EMPTY CALLDATA HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an empty calldata bytes. function emptySignature() internal pure returns (bytes calldata signature) { /// @solidity memory-safe-assembly assembly { signature.length := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The mantissa is too big to fit. error MantissaOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, due to an multiplication overflow. error SMulWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error SDivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The input outside the acceptable domain. error OutOfDomain(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if gt(x, div(not(0), y)) { if y { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down. function sMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`. if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) { mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if iszero(eq(div(z, y), x)) { if y { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } } z := add(iszero(iszero(mod(z, WAD))), div(z, WAD)) } } /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks. function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`. if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function sDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, WAD) // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`. if iszero(mul(y, eq(sdiv(z, WAD), x))) { mstore(0x00, 0x5c43740d) // `SDivWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`. if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks. function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. /// Note: This function is an approximation. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln /// Note: This function is an approximation. Monotonically increasing. function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is less than 0.5 we return zero. // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`. if (x <= -41446531673892822313) return r; /// @solidity memory-safe-assembly assembly { // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96` // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // `k` is in the range `[-61, 195]`. // Evaluate using a (6, 7)-term rational approximation. // `p` is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already `2**96` too large. r := sdiv(p, q) } // r should be in the range `(0.09, 0.25) * 2**96`. // We now need to multiply r by: // - The scale factor `s ≈ 6.031367120`. // - The `2**k` factor from the range reduction. // - The `1e18 / 2**96` factor for base conversion. // We do this all at once, with an intermediate result in `2**213` // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln /// Note: This function is an approximation. Monotonically increasing. function lnWad(int256 x) internal pure returns (int256 r) { /// @solidity memory-safe-assembly assembly { // We want to convert `x` from `10**18` fixed point to `2**96` fixed point. // We do this by multiplying by `2**96 / 10**18`. But since // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here // and add `ln(2**96 / 10**18)` at the end. // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`. r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // We place the check here for more optimal stack operations. if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } // forgefmt: disable-next-item r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x := shr(159, shl(r, x)) // Evaluate using a (8, 8)-term rational approximation. // `p` is made monic, we will multiply by a scale factor later. // forgefmt: disable-next-item let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir. sar(96, mul(add(43456485725739037958740375743393, sar(96, mul(add(24828157081833163892658089445524, sar(96, mul(add(3273285459638523848632254066296, x), x))), x))), x)), 11111509109440967052023855526967) p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857) p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526) p := sub(mul(p, x), shl(96, 795164235651350426258249787498)) // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. // `q` is monic by convention. let q := add(5573035233440673466300451813936, x) q := add(71694874799317883764090561454958, sar(96, mul(x, q))) q := add(283447036172924575727196451306956, sar(96, mul(x, q))) q := add(401686690394027663651624208769553, sar(96, mul(x, q))) q := add(204048457590392012362485061816622, sar(96, mul(x, q))) q := add(31853899698501571402653359427138, sar(96, mul(x, q))) q := add(909429971244387300277376558375, sar(96, mul(x, q))) // `p / q` is in the range `(0, 0.125) * 2**96`. // Finalization, we need to: // - Multiply by the scale factor `s = 5.549…`. // - Add `ln(2**96 / 10**18)`. // - Add `k * ln(2)`. // - Multiply by `10**18 / 2**96 = 5**18 >> 78`. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already `2**96` too large. p := sdiv(p, q) // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`. p := mul(1677202110996718588342820967067443963516166, p) // Add `ln(2) * k * 5**18 * 2**192`. // forgefmt: disable-next-item p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p) // Add `ln(2**96 / 10**18) * 5**18 * 2**192`. p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p) // Base conversion: mul `2**18 / 2**192`. r := sar(174, p) } } /// @dev Returns `W_0(x)`, denominated in `WAD`. /// See: https://en.wikipedia.org/wiki/Lambert_W_function /// a.k.a. Product log function. This is an approximation of the principal branch. /// Note: This function is an approximation. Monotonically increasing. function lambertW0Wad(int256 x) internal pure returns (int256 w) { // forgefmt: disable-next-item unchecked { if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`. (int256 wad, int256 p) = (int256(WAD), x); uint256 c; // Whether we need to avoid catastrophic cancellation. uint256 i = 4; // Number of iterations. if (w <= 0x1ffffffffffff) { if (-0x4000000000000 <= w) { i = 1; // Inputs near zero only take one step to converge. } else if (w <= -0x3ffffffffffffff) { i = 32; // Inputs near `-1/e` take very long to converge. } } else if (uint256(w >> 63) == uint256(0)) { /// @solidity memory-safe-assembly assembly { // Inline log2 for more performance, since the range is small. let v := shr(49, w) let l := shl(3, lt(0xff, v)) l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)), 49) w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13)) c := gt(l, 60) i := add(2, add(gt(l, 53), c)) } } else { int256 ll = lnWad(w = lnWad(w)); /// @solidity memory-safe-assembly assembly { // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`. w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll)) i := add(3, iszero(shr(68, x))) c := iszero(shr(143, x)) } if (c == uint256(0)) { do { // If `x` is big, use Newton's so that intermediate values won't overflow. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := mul(w, div(e, wad)) w := sub(w, sdiv(sub(t, x), div(add(e, t), wad))) } if (p <= w) break; p = w; } while (--i != uint256(0)); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } return w; } } do { // Otherwise, use Halley's for faster convergence. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := add(w, wad) let s := sub(mul(w, e), mul(x, wad)) w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t))))) } if (p <= w) break; p = w; } while (--i != c); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation. if (c == uint256(0)) return w; int256 t = w | 1; /// @solidity memory-safe-assembly assembly { x := sdiv(mul(x, wad), t) } x = (t * (wad + lnWad(x))); /// @solidity memory-safe-assembly assembly { w := sdiv(x, add(wad, t)) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `a * b == x * y`, with full precision. function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0)))) } } /// @dev Calculates `floor(x * y / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Temporarily use `z` as `p0` to save gas. z := mul(x, y) // Lower 256 bits of `x * y`. for {} 1 {} { // If overflows. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`. /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. let r := mulmod(x, y, d) // Compute remainder using mulmod. let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`. // Make sure `z` is less than `2**256`. Also prevents `d == 0`. // Placing the check here seems to give more optimal stack operations. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } d := div(d, t) // Divide `d` by `t`, which is a power of two. // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(2, mul(3, d)) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 z := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)), mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256 ) break } z := div(z, d) break } } } /// @dev Calculates `floor(x * y / d)` with full precision. /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits. /// Performs the full 512 bit calculation regardless. function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(z, lt(mm, z))) let t := and(d, sub(0, d)) let r := mulmod(x, y, d) d := div(d, t) let inv := xor(2, mul(3, d)) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) z := mul( or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)), mul(sub(2, mul(d, inv)), inv) ) } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { z = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { z := add(z, 1) if iszero(z) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Calculates `floor(x * y / 2 ** n)` with full precision. /// Throws if result overflows a uint256. /// Credit to Philogy under MIT license: /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Temporarily use `z` as `p0` to save gas. z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`. for {} 1 {} { if iszero(or(iszero(x), eq(div(z, x), y))) { let k := and(n, 0xff) // `n`, cleaned. let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`. // | p1 | z | // Before: | p1_0 ¦ p1_1 | z_0 ¦ z_1 | // Final: | 0 ¦ p1_0 | p1_1 ¦ z_0 | // Check that final `z` doesn't overflow by checking that p1_0 = 0. if iszero(shr(k, p1)) { z := add(shl(sub(256, k), p1), shr(k, z)) break } mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } z := shr(and(n, 0xff), z) break } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(z, d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(z, d))), div(z, d)) } } /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`. function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) { /// @solidity memory-safe-assembly assembly { let g := n let r := mod(a, n) for { let y := 1 } 1 {} { let q := div(g, r) let t := g g := r r := sub(t, mul(r, q)) let u := x x := y y := sub(u, mul(y, q)) if iszero(r) { break } } x := mul(eq(g, 1), add(x, mul(slt(x, 0), n))) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Returns `condition ? x : y`, without branching. function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), iszero(condition))) } } /// @dev Returns `condition ? x : y`, without branching. function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), iszero(condition))) } } /// @dev Returns `condition ? x : y`, without branching. function ternary(bool condition, address x, address y) internal pure returns (address z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), iszero(condition))) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if x { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`, rounded down. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`, rounded down. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy /// Formally verified by xuwinnie: /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // Makeshift lookup table to nudge the approximate log2 result. z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) // Newton-Raphson's. z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) // Round down. z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18); z = (1 + sqrt(x)) * 10 ** 9; z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1; } /// @solidity memory-safe-assembly assembly { z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down. } } /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down. /// Formally verified by xuwinnie: /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36); z = (1 + cbrt(x)) * 10 ** 12; z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3; } /// @solidity memory-safe-assembly assembly { let p := x for {} 1 {} { if iszero(shr(229, p)) { if iszero(shr(199, p)) { p := mul(p, 100000000000000000) // 10 ** 17. break } p := mul(p, 100000000) // 10 ** 8. break } if iszero(shr(249, p)) { p := mul(p, 100) } break } let t := mulmod(mul(z, z), z, p) z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down. } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := 1 if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for {} x { x := sub(x, 1) } { z := mul(z, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`. /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent). function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) { /// @solidity memory-safe-assembly assembly { mantissa := x if mantissa { if iszero(mod(mantissa, 1000000000000000000000000000000000)) { mantissa := div(mantissa, 1000000000000000000000000000000000) exponent := 33 } if iszero(mod(mantissa, 10000000000000000000)) { mantissa := div(mantissa, 10000000000000000000) exponent := add(exponent, 19) } if iszero(mod(mantissa, 1000000000000)) { mantissa := div(mantissa, 1000000000000) exponent := add(exponent, 12) } if iszero(mod(mantissa, 1000000)) { mantissa := div(mantissa, 1000000) exponent := add(exponent, 6) } if iszero(mod(mantissa, 10000)) { mantissa := div(mantissa, 10000) exponent := add(exponent, 4) } if iszero(mod(mantissa, 100)) { mantissa := div(mantissa, 100) exponent := add(exponent, 2) } if iszero(mod(mantissa, 10)) { mantissa := div(mantissa, 10) exponent := add(exponent, 1) } } } } /// @dev Convenience function for packing `x` into a smaller number using `sci`. /// The `mantissa` will be in bits [7..255] (the upper 249 bits). /// The `exponent` will be in bits [0..6] (the lower 7 bits). /// Use `SafeCastLib` to safely ensure that the `packed` number is small /// enough to fit in the desired unsigned integer type: /// ``` /// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether)); /// ``` function packSci(uint256 x) internal pure returns (uint256 packed) { (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`. /// @solidity memory-safe-assembly assembly { if shr(249, x) { mstore(0x00, 0xce30380c) // `MantissaOverflow()`. revert(0x1c, 0x04) } packed := or(shl(7, x), packed) } } /// @dev Convenience function for unpacking a packed number from `packSci`. function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) { unchecked { unpacked = (packed >> 7) * 10 ** (packed & 0x7f); } } /// @dev Returns the average of `x` and `y`. Rounds towards zero. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { unchecked { z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255); } } /// @dev Returns the absolute distance between `x` and `y`. function dist(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`, /// with `t` clamped between `begin` and `end` (inclusive). /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`). /// If `begins == end`, returns `t <= begin ? a : b`. function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end) internal pure returns (uint256) { if (begin > end) (t, begin, end) = (~t, ~begin, ~end); if (t <= begin) return a; if (t >= end) return b; unchecked { if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin); return a - fullMulDiv(a - b, t - begin, end - begin); } } /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`. /// with `t` clamped between `begin` and `end` (inclusive). /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`). /// If `begins == end`, returns `t <= begin ? a : b`. function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end) internal pure returns (int256) { if (begin > end) (t, begin, end) = (~t, ~begin, ~end); if (t <= begin) return a; if (t >= end) return b; // forgefmt: disable-next-item unchecked { if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a), uint256(t - begin), uint256(end - begin))); return int256(uint256(a) - fullMulDiv(uint256(a - b), uint256(t - begin), uint256(end - begin))); } } /// @dev Returns if `x` is an even number. Some people may need this. function isEven(uint256 x) internal pure returns (bool) { return x & uint256(1) == uint256(0); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * This extension of the {Ownable} contract includes a two-step mechanism to transfer * ownership, where the new owner must call {acceptOwnership} in order to replace the * old one. This can help prevent common mistakes, such as transfers of ownership to * incorrect accounts, or to contracts that are unable to interact with the * permission system. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. * * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { bool private _paused; /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IStaking { struct Stake { uint256 amount; // Amount of tokens staked uint256 lastAccruedBlock; // Block number when stake was created/last updated uint256 accruedInterest; } function stake(uint256 amount, address beneficiary) external; function unstake( uint256 amount, uint256 unlockDelayReduction, address onBehalfOf ) external; function getStakeInfo(address user) external view returns (Stake memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "@solady/=lib/solady/src/", "solady/=lib/solady/src/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_signer","type":"address"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_staking","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidMerkleProof","type":"error"},{"inputs":[],"name":"InvalidPercentage","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"UninitializedStaking","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"AirdropClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newPercentage","type":"uint256"}],"name":"StakePercentageUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"},{"internalType":"bytes","name":"_signature","type":"bytes"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bool","name":"_lockOnly","type":"bool"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_claimRoot","type":"bytes32"}],"name":"setClaimRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_percentage","type":"uint256"}],"name":"setStakePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"staking","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggleActive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_reductionBlock","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"unlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTokens","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60c060405234801561000f575f80fd5b5060405161132e38038061132e83398101604081905261002e916101ca565b338061005357604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61005c816100b1565b506001805460ff60a01b19169055600280546001600160a01b0319166001600160a01b0385811691909117909155828116608052811660a0526706f05b59d3b200006004556100a96100cd565b50505061020a565b600180546001600160a01b03191690556100ca8161012d565b50565b6100d561017c565b6001805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586101103390565b6040516001600160a01b03909116815260200160405180910390a1565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b61018f600154600160a01b900460ff1690565b156101ad5760405163d93c066560e01b815260040160405180910390fd5b565b80516001600160a01b03811681146101c5575f80fd5b919050565b5f805f606084860312156101dc575f80fd5b6101e5846101af565b92506101f3602085016101af565b9150610201604085016101af565b90509250925092565b60805160a0516110c461026a5f395f81816101af01528181610358015281816103f2015281816106620152818161072e01526107e401525f818161029c015281816102d3015281816105a00152818161075d015261087801526110c45ff3fe608060405234801561000f575f80fd5b506004361061011c575f3560e01c8063715018a6116100a9578063c884ef831161006e578063c884ef831461023e578063e30c397814610260578063ecab169a14610271578063f2fde38b14610284578063fc0c546a14610297575f80fd5b8063715018a61461020257806374dd00d21461020a57806379ba50971461021d5780638da5cb5b14610225578063c1a70d1414610235575f80fd5b8063238ac933116100ef578063238ac9331461017757806329c68dc1146101a25780634cf088d9146101aa5780635c975abb146101d15780636c19e783146101ef575f80fd5b806306b091f91461012057806314ea35e7146101355780631e10f74a1461015157806321b97f2014610164575b5f80fd5b61013361012e366004610de7565b6102be565b005b61013e60035481565b6040519081526020015b60405180910390f35b61013361015f366004610e54565b6102fe565b610133610172366004610e9c565b610458565b60025461018a906001600160a01b031681565b6040516001600160a01b039091168152602001610148565b610133610465565b61018a7f000000000000000000000000000000000000000000000000000000000000000081565b600154600160a01b900460ff165b6040519015158152602001610148565b6101336101fd366004610eb3565b610491565b6101336104bb565b610133610218366004610e9c565b6104cc565b610133610538565b5f546001600160a01b031661018a565b61013e60045481565b6101df61024c366004610eb3565b60056020525f908152604090205460ff1681565b6001546001600160a01b031661018a565b61013361027f366004610eeb565b610581565b610133610292366004610eb3565b6108de565b61018a7f000000000000000000000000000000000000000000000000000000000000000081565b6102c661094e565b6102fa6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016838361097a565b5050565b6103066109d1565b5f3384304660405160200161031e9493929190610f98565b6040516020818303038152906040528051906020012090506103418184846109fc565b60405163c345315360e01b81523360048201525f907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063c345315390602401606060405180830381865afa1580156103a5573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103c99190610fd1565b80516040516393d4f2c960e01b81526004810191909152602481018790523360448201529091507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906393d4f2c9906064015f604051808303815f87803b15801561043b575f80fd5b505af115801561044d573d5f803e3d5ffd5b505050505050505050565b61046061094e565b600355565b61046d61094e565b600154600160a01b900460ff161561048957610487610a92565b565b610487610ae7565b61049961094e565b600280546001600160a01b0319166001600160a01b0392909216919091179055565b6104c361094e565b6104875f610b2a565b6104d461094e565b670de0b6b3a76400008111156104fd57604051631f3b85d360e01b815260040160405180910390fd5b60048190556040518181527f8f54e5c57cf8a892c2b64dba40ef778e8e6a9631bf5d6069c2f249fef40d10e99060200160405180910390a150565b60015433906001600160a01b031681146105755760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b61057e81610b2a565b50565b6105896109d1565b6040516370a0823160e01b815230600482015282907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa1580156105ed573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106119190611037565b101561063057604051631e9acf1760e31b815260040160405180910390fd5b335f9081526005602052604090205460ff161561066057604051630c8d9eab60e31b815260040160405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166106a7576040516330075daf60e11b815260040160405180910390fd5b335f908152600560205260408120805460ff191660011790556004546106ce908490610b43565b90506106dc87878585610b72565b5f338430466040516020016106f49493929190610f98565b6040516020818303038152906040528051906020012090506107178187876109fc565b60405163095ea7b360e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063095ea7b3906044016020604051808303815f875af11580156107a3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107c7919061104e565b50604051637acb775760e01b8152600481018390523360248201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690637acb7757906044015f604051808303815f87803b15801561082d575f80fd5b505af115801561083f573d5f803e3d5ffd5b505050505f82856108509190611069565b11801561085b575082155b1561089f5761089f3361086e8487611069565b6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016919061097a565b60405184815233907f650e45f04ef8a0c267b2f78d983913f69ae3a353b2b32de5429307522be0ab559060200160405180910390a25050505050505050565b6108e661094e565b600180546001600160a01b0383166001600160a01b031990911681179091556109165f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f546001600160a01b031633146104875760405163118cdaa760e01b815233600482015260240161056c565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b1790526109cc908490610c19565b505050565b600154600160a01b900460ff16156104875760405163d93c066560e01b815260040160405180910390fd5b5f819003610a1d57604051638baa579f60e01b815260040160405180910390fd5b5f610a4c846020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c60042090565b90505f610a5a828585610c8b565b6002549091506001600160a01b03808316911614610a8b57604051638baa579f60e01b815260040160405180910390fd5b5050505050565b610a9a610d13565b6001805460ff60a01b191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b610aef6109d1565b6001805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610aca3390565b600180546001600160a01b031916905561057e81610d3d565b5f815f1904831115610b62578115610b625763bac65e5b5f526004601cfd5b50670de0b6b3a764000091020490565b6040516bffffffffffffffffffffffff193360601b1660208201526034810183905281151560f81b60548201525f90605501604051602081830303815290604052805190602001209050610bfc8585808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250506003549150849050610d8c565b610a8b5760405163582f497d60e11b815260040160405180910390fd5b5f8060205f8451602086015f885af180610c38576040513d5f823e3d81fd5b50505f513d91508115610c4f578060011415610c5c565b6001600160a01b0384163b155b15610c8557604051635274afe760e01b81526001600160a01b038516600482015260240161056c565b50505050565b5f6040518260408114610ca65760418114610ccd5750610cfe565b60208581013560ff81901c601b0190915285356040526001600160ff1b0316606052610cde565b60408501355f1a6020526040856040375b50845f526020600160805f60015afa5191505f606052806040523d610d0b575b638baa579f5f526004601cfd5b509392505050565b600154600160a01b900460ff1661048757604051638dfc202b60e01b815260040160405180910390fd5b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f835115610dc55760208401845160051b81015b8151841160051b938452815160209485185260405f209390910190808210610da05750505b5014919050565b80356001600160a01b0381168114610de2575f80fd5b919050565b5f8060408385031215610df8575f80fd5b610e0183610dcc565b946020939093013593505050565b5f8083601f840112610e1f575f80fd5b50813567ffffffffffffffff811115610e36575f80fd5b602083019150836020828501011115610e4d575f80fd5b9250929050565b5f805f60408486031215610e66575f80fd5b83359250602084013567ffffffffffffffff811115610e83575f80fd5b610e8f86828701610e0f565b9497909650939450505050565b5f60208284031215610eac575f80fd5b5035919050565b5f60208284031215610ec3575f80fd5b610ecc82610dcc565b9392505050565b801515811461057e575f80fd5b8035610de281610ed3565b5f805f805f8060808789031215610f00575f80fd5b863567ffffffffffffffff80821115610f17575f80fd5b818901915089601f830112610f2a575f80fd5b813581811115610f38575f80fd5b8a60208260051b8501011115610f4c575f80fd5b602092830198509650908801359080821115610f66575f80fd5b50610f7389828a01610e0f565b90955093505060408701359150610f8c60608801610ee0565b90509295509295509295565b6bffffffffffffffffffffffff19606095861b8116825260148201949094529190931b9091166034820152604881019190915260680190565b5f60608284031215610fe1575f80fd5b6040516060810181811067ffffffffffffffff8211171561101057634e487b7160e01b5f52604160045260245ffd5b80604052508251815260208301516020820152604083015160408201528091505092915050565b5f60208284031215611047575f80fd5b5051919050565b5f6020828403121561105e575f80fd5b8151610ecc81610ed3565b8181038181111561108857634e487b7160e01b5f52601160045260245ffd5b9291505056fea26469706673582212207bff1db70628f15d4115b083b6def2480ced8f6fdfadcf4db0d4028bf69efefa64736f6c634300081900330000000000000000000000002d8517dc06903c54a47570924a98b27f5ef2cf0e0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f100000000000000000000000077da25a537ed17988d1a843af79a5869f8925591
Deployed Bytecode
0x608060405234801561000f575f80fd5b506004361061011c575f3560e01c8063715018a6116100a9578063c884ef831161006e578063c884ef831461023e578063e30c397814610260578063ecab169a14610271578063f2fde38b14610284578063fc0c546a14610297575f80fd5b8063715018a61461020257806374dd00d21461020a57806379ba50971461021d5780638da5cb5b14610225578063c1a70d1414610235575f80fd5b8063238ac933116100ef578063238ac9331461017757806329c68dc1146101a25780634cf088d9146101aa5780635c975abb146101d15780636c19e783146101ef575f80fd5b806306b091f91461012057806314ea35e7146101355780631e10f74a1461015157806321b97f2014610164575b5f80fd5b61013361012e366004610de7565b6102be565b005b61013e60035481565b6040519081526020015b60405180910390f35b61013361015f366004610e54565b6102fe565b610133610172366004610e9c565b610458565b60025461018a906001600160a01b031681565b6040516001600160a01b039091168152602001610148565b610133610465565b61018a7f00000000000000000000000077da25a537ed17988d1a843af79a5869f892559181565b600154600160a01b900460ff165b6040519015158152602001610148565b6101336101fd366004610eb3565b610491565b6101336104bb565b610133610218366004610e9c565b6104cc565b610133610538565b5f546001600160a01b031661018a565b61013e60045481565b6101df61024c366004610eb3565b60056020525f908152604090205460ff1681565b6001546001600160a01b031661018a565b61013361027f366004610eeb565b610581565b610133610292366004610eb3565b6108de565b61018a7f0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f181565b6102c661094e565b6102fa6001600160a01b037f0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f116838361097a565b5050565b6103066109d1565b5f3384304660405160200161031e9493929190610f98565b6040516020818303038152906040528051906020012090506103418184846109fc565b60405163c345315360e01b81523360048201525f907f00000000000000000000000077da25a537ed17988d1a843af79a5869f89255916001600160a01b03169063c345315390602401606060405180830381865afa1580156103a5573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103c99190610fd1565b80516040516393d4f2c960e01b81526004810191909152602481018790523360448201529091507f00000000000000000000000077da25a537ed17988d1a843af79a5869f89255916001600160a01b0316906393d4f2c9906064015f604051808303815f87803b15801561043b575f80fd5b505af115801561044d573d5f803e3d5ffd5b505050505050505050565b61046061094e565b600355565b61046d61094e565b600154600160a01b900460ff161561048957610487610a92565b565b610487610ae7565b61049961094e565b600280546001600160a01b0319166001600160a01b0392909216919091179055565b6104c361094e565b6104875f610b2a565b6104d461094e565b670de0b6b3a76400008111156104fd57604051631f3b85d360e01b815260040160405180910390fd5b60048190556040518181527f8f54e5c57cf8a892c2b64dba40ef778e8e6a9631bf5d6069c2f249fef40d10e99060200160405180910390a150565b60015433906001600160a01b031681146105755760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b61057e81610b2a565b50565b6105896109d1565b6040516370a0823160e01b815230600482015282907f0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f16001600160a01b0316906370a0823190602401602060405180830381865afa1580156105ed573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106119190611037565b101561063057604051631e9acf1760e31b815260040160405180910390fd5b335f9081526005602052604090205460ff161561066057604051630c8d9eab60e31b815260040160405180910390fd5b7f00000000000000000000000077da25a537ed17988d1a843af79a5869f89255916001600160a01b03166106a7576040516330075daf60e11b815260040160405180910390fd5b335f908152600560205260408120805460ff191660011790556004546106ce908490610b43565b90506106dc87878585610b72565b5f338430466040516020016106f49493929190610f98565b6040516020818303038152906040528051906020012090506107178187876109fc565b60405163095ea7b360e01b81526001600160a01b037f00000000000000000000000077da25a537ed17988d1a843af79a5869f892559181166004830152602482018490527f0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f1169063095ea7b3906044016020604051808303815f875af11580156107a3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107c7919061104e565b50604051637acb775760e01b8152600481018390523360248201527f00000000000000000000000077da25a537ed17988d1a843af79a5869f89255916001600160a01b031690637acb7757906044015f604051808303815f87803b15801561082d575f80fd5b505af115801561083f573d5f803e3d5ffd5b505050505f82856108509190611069565b11801561085b575082155b1561089f5761089f3361086e8487611069565b6001600160a01b037f0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f116919061097a565b60405184815233907f650e45f04ef8a0c267b2f78d983913f69ae3a353b2b32de5429307522be0ab559060200160405180910390a25050505050505050565b6108e661094e565b600180546001600160a01b0383166001600160a01b031990911681179091556109165f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f546001600160a01b031633146104875760405163118cdaa760e01b815233600482015260240161056c565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b1790526109cc908490610c19565b505050565b600154600160a01b900460ff16156104875760405163d93c066560e01b815260040160405180910390fd5b5f819003610a1d57604051638baa579f60e01b815260040160405180910390fd5b5f610a4c846020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c60042090565b90505f610a5a828585610c8b565b6002549091506001600160a01b03808316911614610a8b57604051638baa579f60e01b815260040160405180910390fd5b5050505050565b610a9a610d13565b6001805460ff60a01b191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b610aef6109d1565b6001805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610aca3390565b600180546001600160a01b031916905561057e81610d3d565b5f815f1904831115610b62578115610b625763bac65e5b5f526004601cfd5b50670de0b6b3a764000091020490565b6040516bffffffffffffffffffffffff193360601b1660208201526034810183905281151560f81b60548201525f90605501604051602081830303815290604052805190602001209050610bfc8585808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250506003549150849050610d8c565b610a8b5760405163582f497d60e11b815260040160405180910390fd5b5f8060205f8451602086015f885af180610c38576040513d5f823e3d81fd5b50505f513d91508115610c4f578060011415610c5c565b6001600160a01b0384163b155b15610c8557604051635274afe760e01b81526001600160a01b038516600482015260240161056c565b50505050565b5f6040518260408114610ca65760418114610ccd5750610cfe565b60208581013560ff81901c601b0190915285356040526001600160ff1b0316606052610cde565b60408501355f1a6020526040856040375b50845f526020600160805f60015afa5191505f606052806040523d610d0b575b638baa579f5f526004601cfd5b509392505050565b600154600160a01b900460ff1661048757604051638dfc202b60e01b815260040160405180910390fd5b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f835115610dc55760208401845160051b81015b8151841160051b938452815160209485185260405f209390910190808210610da05750505b5014919050565b80356001600160a01b0381168114610de2575f80fd5b919050565b5f8060408385031215610df8575f80fd5b610e0183610dcc565b946020939093013593505050565b5f8083601f840112610e1f575f80fd5b50813567ffffffffffffffff811115610e36575f80fd5b602083019150836020828501011115610e4d575f80fd5b9250929050565b5f805f60408486031215610e66575f80fd5b83359250602084013567ffffffffffffffff811115610e83575f80fd5b610e8f86828701610e0f565b9497909650939450505050565b5f60208284031215610eac575f80fd5b5035919050565b5f60208284031215610ec3575f80fd5b610ecc82610dcc565b9392505050565b801515811461057e575f80fd5b8035610de281610ed3565b5f805f805f8060808789031215610f00575f80fd5b863567ffffffffffffffff80821115610f17575f80fd5b818901915089601f830112610f2a575f80fd5b813581811115610f38575f80fd5b8a60208260051b8501011115610f4c575f80fd5b602092830198509650908801359080821115610f66575f80fd5b50610f7389828a01610e0f565b90955093505060408701359150610f8c60608801610ee0565b90509295509295509295565b6bffffffffffffffffffffffff19606095861b8116825260148201949094529190931b9091166034820152604881019190915260680190565b5f60608284031215610fe1575f80fd5b6040516060810181811067ffffffffffffffff8211171561101057634e487b7160e01b5f52604160045260245ffd5b80604052508251815260208301516020820152604083015160408201528091505092915050565b5f60208284031215611047575f80fd5b5051919050565b5f6020828403121561105e575f80fd5b8151610ecc81610ed3565b8181038181111561108857634e487b7160e01b5f52601160045260245ffd5b9291505056fea26469706673582212207bff1db70628f15d4115b083b6def2480ced8f6fdfadcf4db0d4028bf69efefa64736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000002d8517dc06903c54a47570924a98b27f5ef2cf0e0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f100000000000000000000000077da25a537ed17988d1a843af79a5869f8925591
-----Decoded View---------------
Arg [0] : _signer (address): 0x2D8517DC06903C54a47570924A98B27F5ef2Cf0e
Arg [1] : _token (address): 0x4C1746A800D224393fE2470C70A35717eD4eA5F1
Arg [2] : _staking (address): 0x77dA25A537ed17988d1A843AF79A5869F8925591
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 0000000000000000000000002d8517dc06903c54a47570924a98b27f5ef2cf0e
Arg [1] : 0000000000000000000000004c1746a800d224393fe2470c70a35717ed4ea5f1
Arg [2] : 00000000000000000000000077da25a537ed17988d1a843af79a5869f8925591
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.