Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
0x61014060 | 18072487 | 403 days ago | IN | 0 ETH | 0.01041924 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
StakingMessageHelper
Compiler Version
v0.8.19+commit.7dd6d404
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; import {ECDSA} from "ECDSA.sol"; import {EIP712} from "EIP712.sol"; import {NftId} from "IChainNft.sol"; contract StakingMessageHelper is EIP712 { string public constant EIP712_DOMAIN_NAME = "EtheriscStaking"; string public constant EIP712_DOMAIN_VERSION = "1"; // hint: user defined data typs don't work here, NftId -> uint96 string public constant EIP712_STAKE_TYPE = "Stake(uint96 target,uint256 dipAmount,bytes32 signatureId)"; bytes32 private constant EIP712_STAKE_TYPE_HASH = keccak256(abi.encodePacked(EIP712_STAKE_TYPE)); string public constant EIP712_RESTAKE_TYPE = "Restake(uint96 stakeId,uint96 newTarget,bytes32 signatureId)"; bytes32 private constant EIP712_RESTAKE_TYPE_HASH = keccak256(abi.encodePacked(EIP712_RESTAKE_TYPE)); mapping(bytes32 signatureHash => bool isUsed) private _signatureIsUsed; constructor() EIP712(EIP712_DOMAIN_NAME, EIP712_DOMAIN_VERSION) // solhint-disable-next-line no-empty-blocks { } function processStakeSignature( address owner, NftId target, uint256 dipAmount, bytes32 signatureId, // ensures unique signatures even when all other attributes are equal bytes calldata signature ) external { bytes32 digest = getStakeDigest(target, dipAmount, signatureId); address signer = getSigner(digest, signature); _processSignature(owner, signer ,signature); } function processRestakeSignature( address owner, NftId stakeId, NftId newTarget, bytes32 signatureId, // ensures unique signatures even when all other attributes are equal bytes calldata signature ) external { bytes32 digest = getRestakeDigest(stakeId, newTarget, signatureId); address signer = getSigner(digest, signature); _processSignature(owner, signer ,signature); } function getStakeDigest( NftId target, uint256 dipAmount, bytes32 signatureId ) public view returns(bytes32 digest) { bytes32 structHash = keccak256( abi.encode( EIP712_STAKE_TYPE_HASH, target, dipAmount, signatureId)); digest = _hashTypedDataV4(structHash); } function getRestakeDigest( NftId stakeId, NftId newTarget, bytes32 signatureId ) public view returns(bytes32 digest) { bytes32 structHash = keccak256( abi.encode( EIP712_RESTAKE_TYPE_HASH, stakeId, newTarget, signatureId)); digest = _hashTypedDataV4(structHash); } function getSigner( bytes32 digest, bytes calldata signature ) public pure returns(address signer) { return ECDSA.recover(digest, signature); } function _processSignature( address owner, address signer, bytes calldata signature ) internal { bytes32 signatureHash = keccak256(abi.encode(signature)); require(!_signatureIsUsed[signatureHash], "ERROR:SMH-001:SIGNATURE_USED"); require(owner == signer, "ERROR:SMH-002:SIGNATURE_INVALID"); _signatureIsUsed[signatureHash] = true; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.0; import "ECDSA.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _CACHED_DOMAIN_SEPARATOR; uint256 private immutable _CACHED_CHAIN_ID; address private immutable _CACHED_THIS; bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { bytes32 hashedName = keccak256(bytes(name)); bytes32 hashedVersion = keccak256(bytes(version)); bytes32 typeHash = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion); _CACHED_THIS = address(this); _TYPE_HASH = typeHash; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) { return _CACHED_DOMAIN_SEPARATOR; } else { return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION); } } function _buildDomainSeparator( bytes32 typeHash, bytes32 nameHash, bytes32 versionHash ) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; import {IERC721Enumerable} from "IERC721Enumerable.sol"; import {IChainRegistry} from "IChainRegistry.sol"; type NftId is uint96; using { eqNftId as ==, neNftId as != } for NftId global; function eqNftId(NftId a, NftId b) pure returns(bool isSame) { return NftId.unwrap(a) == NftId.unwrap(b); } function neNftId(NftId a, NftId b) pure returns(bool isDifferent) { return NftId.unwrap(a) != NftId.unwrap(b); } function gtz(NftId a) pure returns(bool) { return NftId.unwrap(a) > 0; } function zeroNftId() pure returns(NftId) { return NftId.wrap(0); } function toNftId(uint256 tokenId) pure returns(NftId) { return NftId.wrap(uint96(tokenId)); } interface IChainNft is IERC721Enumerable { function mint(address to, string memory uri) external returns(uint256 tokenId); function burn(uint256 tokenId) external; function setURI(uint256 tokenId, string memory uri) external; function getRegistry() external view returns(IChainRegistry registry); function exists(uint256 tokenId) external view returns(bool); function totalMinted() external view returns(uint256); function implementsIChainNft() external pure returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.0; import "IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; import {IBaseTypes, ChainId, Blocknumber} from "IBaseTypes.sol"; import {Version} from "IVersionType.sol"; import {IVersionable} from "IVersionable.sol"; import {IStaking} from "IStaking.sol"; import {IChainNft, NftId} from "IChainNft.sol"; import {IInstanceServiceFacade} from "IInstanceServiceFacade.sol"; type ObjectType is uint8; using { eqObjectType as ==, neObjectType as != } for ObjectType global; function eqObjectType(ObjectType a, ObjectType b) pure returns(bool isSame) { return ObjectType.unwrap(a) == ObjectType.unwrap(b); } function neObjectType(ObjectType a, ObjectType b) pure returns(bool isDifferent) { return ObjectType.unwrap(a) != ObjectType.unwrap(b); } interface IChainRegistry is IBaseTypes, IVersionable { enum ObjectState { Undefined, Proposed, Approved, Suspended, Archived, Burned } struct NftInfo { NftId id; ChainId chain; ObjectType objectType; ObjectState state; string uri; bytes data; Blocknumber mintedIn; Blocknumber updatedIn; Version version; } event LogChainRegistryObjectRegistered(NftId id, ChainId chain, ObjectType objectType, ObjectState state, address to); event LogChainRegistryObjectStateSet(NftId id, ObjectState stateNew, ObjectState stateOld, address setBy); event LogChainRegistryObjectDataUpdated(NftId id, address updatedBy); //--- state changing functions ------------------// function registerChain(ChainId chain, string memory uri) external returns(NftId id); function registerRegistry(ChainId chain, address registry, string memory uri) external returns(NftId id); function registerToken(ChainId chain,address token, string memory uri) external returns(NftId id); function registerStake( NftId target, address staker ) external returns(NftId id); function registerInstance( address instanceRegistry, string memory displayName, string memory uri ) external returns(NftId id); function registerComponent( bytes32 instanceId, uint256 componentId, string memory uri ) external returns(NftId id); function registerBundle( bytes32 instanceId, uint256 riskpoolId, uint256 bundleId, string memory displayName, uint256 expiryAt ) external returns(NftId id); function extendBundleLifetime(NftId id, uint256 lifetimeExtension) external; function setObjectState(NftId id, ObjectState state) external; //--- view and pure functions ------------------// function getNft() external view returns(IChainNft); function getStaking() external view returns(IStaking); function exists(NftId id) external view returns(bool); // generic accessors function objects(ChainId chain, ObjectType t) external view returns(uint256 numberOfObjects); function getNftId(ChainId chain, ObjectType t, uint256 idx) external view returns(NftId id); function getNftInfo(NftId id) external view returns(NftInfo memory); function ownerOf(NftId id) external view returns(address nftOwner); // chain specific accessors function chains() external view returns(uint256 numberOfChains); function getChainId(uint256 idx) external view returns(ChainId chain); function getChainNftId(ChainId chain) external view returns(NftId id); // type specific accessors function getRegistryNftId(ChainId chain) external view returns(NftId id); function getTokenNftId(ChainId chain, address token) external view returns(NftId id); function getInstanceNftId(bytes32 instanceId) external view returns(NftId id); function getComponentNftId(bytes32 instanceId, uint256 componentId) external view returns(NftId id); function getBundleNftId(bytes32 instanceId, uint256 componentId) external view returns(NftId id); function decodeRegistryData(NftId id) external view returns(address registry); function decodeTokenData(NftId id) external view returns(address token); function decodeInstanceData(NftId id) external view returns( bytes32 instanceId, address registry, string memory displayName); function decodeComponentData(NftId id) external view returns( bytes32 instanceId, uint256 componentId, address token); function decodeBundleData(NftId id) external view returns( bytes32 instanceId, uint256 riskpoolId, uint256 bundleId, address token, string memory displayName, uint256 expiryAt); function decodeStakeData(NftId id) external view returns( NftId target, ObjectType targetType); function toChain(uint256 chainId) external pure returns(ChainId); // only same chain: utility to get reference to instance service for specified instance id function getInstanceServiceFacade(bytes32 instanceId) external view returns(IInstanceServiceFacade instanceService); // only same chain: utilitiv function to probe an instance given its registry address function probeInstance(address registry) external view returns( bool isContract, uint256 contractSize, ChainId chain, bytes32 istanceId, bool isValidId, IInstanceServiceFacade instanceService); function implementsIChainRegistry() external pure returns(bool); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; // restriction: uint<n> n needs to be different for each type to support function overloading // allows for chain ids up to 13 digits type ChainId is bytes5; using { eqChainId as ==, neqChainId as != } for ChainId global; function eqChainId(ChainId a, ChainId b) pure returns(bool isSame) { return ChainId.unwrap(a) == ChainId.unwrap(b); } function neqChainId(ChainId a, ChainId b) pure returns(bool isDifferent) { return ChainId.unwrap(a) != ChainId.unwrap(b); } function toChainId(uint256 chainId) pure returns(ChainId) { return ChainId.wrap(bytes5(uint40(chainId)));} function thisChainId() view returns(ChainId) { return toChainId(block.chainid); } type Timestamp is uint40; using { gtTimestamp as >, gteTimestamp as >=, ltTimestamp as <, lteTimestamp as <=, eqTimestamp as ==, neqTimestamp as != } for Timestamp global; function gtTimestamp(Timestamp a, Timestamp b) pure returns(bool) { return Timestamp.unwrap(a) > Timestamp.unwrap(b); } function gteTimestamp(Timestamp a, Timestamp b) pure returns(bool) { return Timestamp.unwrap(a) >= Timestamp.unwrap(b); } function ltTimestamp(Timestamp a, Timestamp b) pure returns(bool) { return Timestamp.unwrap(a) < Timestamp.unwrap(b); } function lteTimestamp(Timestamp a, Timestamp b) pure returns(bool) { return Timestamp.unwrap(a) <= Timestamp.unwrap(b); } function eqTimestamp(Timestamp a, Timestamp b) pure returns(bool) { return Timestamp.unwrap(a) == Timestamp.unwrap(b); } function neqTimestamp(Timestamp a, Timestamp b) pure returns(bool) { return Timestamp.unwrap(a) != Timestamp.unwrap(b); } function toTimestamp(uint256 timestamp) pure returns(Timestamp) { return Timestamp.wrap(uint40(timestamp));} // solhint-disable-next-line not-rely-on-time function blockTimestamp() view returns(Timestamp) { return toTimestamp(block.timestamp); } function zeroTimestamp() pure returns(Timestamp) { return toTimestamp(0); } type Blocknumber is uint32; interface IBaseTypes { function intToBytes(uint256 x, uint8 shift) external pure returns(bytes memory); function toInt(Blocknumber x) external pure returns(uint); function toInt(Timestamp x) external pure returns(uint); function toInt(ChainId x) external pure returns(uint); function blockNumber() external view returns(Blocknumber); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; // restriction: uint<n> n needs to be different for each type to support function overloading type VersionPart is uint16; type Version is uint48; // to concatenate major,minor,patch version parts using { gtVersion as >, gteVersion as >=, eqVersion as == } for Version global; function gtVersion(Version a, Version b) pure returns(bool isGreaterThan) { return Version.unwrap(a) > Version.unwrap(b); } function gteVersion(Version a, Version b) pure returns(bool isGreaterOrSame) { return Version.unwrap(a) >= Version.unwrap(b); } function eqVersion(Version a, Version b) pure returns(bool isSame) { return Version.unwrap(a) == Version.unwrap(b); } function versionPartToInt(VersionPart x) pure returns(uint) { return VersionPart.unwrap(x); } function versionToInt(Version x) pure returns(uint) { return Version.unwrap(x); } function toVersionPart(uint16 versionPart) pure returns(VersionPart) { return VersionPart.wrap(versionPart); } function toVersion( VersionPart major, VersionPart minor, VersionPart patch ) pure returns(Version) { uint majorInt = versionPartToInt(major); uint minorInt = versionPartToInt(minor); uint patchInt = versionPartToInt(patch); return Version.wrap( uint48( (majorInt << 32) + (minorInt << 16) + patchInt)); } function zeroVersion() pure returns(Version) { return toVersion(toVersionPart(0), toVersionPart(0), toVersionPart(0)); } // function toVersionParts(Version _version) // pure // returns( // VersionPart major, // VersionPart minor, // VersionPart patch // ) // { // uint versionInt = versionToInt(_version); // uint16 majorInt = uint16(versionInt >> 32); // versionInt -= majorInt << 32; // uint16 minorInt = uint16(versionInt >> 16); // uint16 patchInt = uint16(versionInt - (minorInt << 16)); // return ( // toVersionPart(majorInt), // toVersionPart(minorInt), // toVersionPart(patchInt) // ); // }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; import {Blocknumber, Timestamp} from "IBaseTypes.sol"; import {Version, VersionPart} from "IVersionType.sol"; interface IVersionable { struct VersionInfo { Version version; address implementation; address activatedBy; Blocknumber activatedIn; Timestamp activatedAt; } event LogVersionableActivated(Version version, address implementation, address activatedBy); /** * @dev IMPORTANT this function needs to be implemented by each new version * any such activate implementation needs to call internal function call _activate() * any new version needs to inherit from previous version */ function activate(address implementation, address activatedBy) external; function isActivated(Version _version) external view returns(bool); function toVersionParts(Version _version) external pure returns( VersionPart major, VersionPart minor, VersionPart patch ); // returns current version (ideally immutable) function version() external pure returns(Version); function versionParts() external pure returns( VersionPart major, VersionPart minor, VersionPart patch ); function versions() external view returns(uint256); function getVersion(uint256 idx) external view returns(Version); function getVersionInfo(Version _version) external view returns(VersionInfo memory); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; import {IERC20Metadata} from "IERC20Metadata.sol"; import {ChainId, Timestamp} from "IBaseTypes.sol"; import {Version} from "IVersionType.sol"; import {IVersionable} from "IVersionable.sol"; import {UFixed} from "UFixedMath.sol"; import {NftId} from "IChainNft.sol"; import {IChainRegistry, ObjectType} from "IChainRegistry.sol"; import {IInstanceServiceFacade} from "IInstanceServiceFacade.sol"; interface IStaking is IVersionable { struct StakeInfo { NftId id; NftId target; uint256 stakeBalance; uint256 rewardBalance; Timestamp createdAt; Timestamp updatedAt; Version version; Timestamp lockedUntil; // introduced with V03 } event LogStakingWalletChanged(address user, address oldWallet, address newWallet); event LogStakingRewardReservesIncreased(address user, uint256 amount, uint256 newBalance); event LogStakingRewardReservesDecreased(address user, uint256 amount, uint256 newBalance); event LogTargetRewardRateSet(address user, NftId target, UFixed oldRewardRate, UFixed newRewardRate); event LogStakingRewardRateSet(address user, UFixed oldRewardRate, UFixed newRewardRate); event LogStakingStakingRateSet(address user, ChainId chain, address token, UFixed oldStakingRate, UFixed newStakingRate); event LogStakingNewStakeCreated(NftId target, address user, NftId id); event LogStakingStaked(NftId target, address user, NftId id, uint256 amount, uint256 newBalance); event LogStakingUnstaked(NftId target, address user, NftId id, uint256 amount, uint256 newBalance); event LogStakingRestaked(NftId oldTarget, NftId newTrget, address user, NftId stakeId, uint256 stakingAmount); event LogStakingRewardsUpdated(NftId id, uint256 amount, uint256 newBalance); event LogStakingRewardsClaimed(NftId id, uint256 amount, uint256 newBalance); //--- state changing functions ------------------// function setStakingWallet(address stakingWalletNew) external; function refillRewardReserves(uint256 dipAmount) external; function withdrawRewardReserves(uint256 dipAmount) external; function setRewardRate(UFixed rewardRate) external; function setStakingRate(ChainId chain, address token, UFixed stakingRate) external; function createStake(NftId target, uint256 dipAmount) external returns(NftId id); function stake(NftId id, uint256 dipAmount) external; function createStakeWithSignature(address owner, NftId target, uint256 dipAmount, bytes32 signatureId, bytes calldata signature) external returns(NftId stakeId); function restake(NftId id, NftId newTarget) external; function restakeWithSignature(address owner, NftId stakeId, NftId newTarget, bytes32 signatureId, bytes calldata signature) external; function unstake(NftId id, uint256 dipAmount) external; function unstakeAndClaimRewards(NftId id) external; function claimRewards(NftId id) external; //--- view and pure functions ------------------// function getRegistry() external view returns(IChainRegistry); function getMessageHelperAddress() external view returns(address messageHelperAddress); function maxRewardRate() external view returns(UFixed rate); function rewardRate() external view returns(UFixed rate); function rewardBalance() external view returns(uint256 dipAmount); function rewardReserves() external view returns(uint256 dipAmount); function getTargetRewardRate(NftId target) external view returns(UFixed rewardRate); function stakeBalance() external view returns(uint256 dipAmount); function stakingRate(ChainId chain, address token) external view returns(UFixed stakingRate); function getStakingWallet() external view returns(address stakingWallet); function getDip() external view returns(IERC20Metadata); function getInfo(NftId id) external view returns(StakeInfo memory info); function stakes(NftId target) external view returns(uint256 dipAmount); function capitalSupport(NftId target) external view returns(uint256 capitalAmount); function isStakingSupportedForType(ObjectType targetType) external view returns(bool isSupported); function isStakingSupported(NftId target) external view returns(bool isSupported); function isUnstakingSupported(NftId target) external view returns(bool isSupported); function isUnstakingAvailable(NftId stakeId) external view returns(bool isAvailable); function calculateRewardsIncrement(StakeInfo memory stakeInfo) external view returns(uint256 rewardsAmount); function calculateRewards(uint256 amount, uint256 duration) external view returns(uint256 rewardAmount); function calculateRequiredStaking(ChainId chain, address token, uint256 tokenAmount) external view returns(uint256 dipAmount); function calculateCapitalSupport(ChainId chain, address token, uint256 dipAmount) external view returns(uint256 tokenAmount); function toChain(uint256 chainId) external pure returns(ChainId); function toRate(uint256 value, int8 exp) external pure returns(UFixed); function rateDecimals() external pure returns(uint256 decimals); //--- view and pure functions (target type specific) ------------------// function getBundleInfo(NftId bundle) external view returns( bytes32 instanceId, uint256 riskpoolId, uint256 bundleId, address token, string memory displayName, IInstanceServiceFacade.BundleState bundleState, Timestamp expiryAt, bool stakingSupported, bool unstakingSupported, uint256 stakeBalance ); function implementsIStaking() external pure returns(bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; import {Math} from "Math.sol"; type UFixed is uint256; using { addUFixed as +, subUFixed as -, mulUFixed as *, divUFixed as /, gtUFixed as >, gteUFixed as >=, ltUFixed as <, lteUFixed as <=, eqUFixed as == } for UFixed global; function addUFixed(UFixed a, UFixed b) pure returns(UFixed) { return UFixed.wrap(UFixed.unwrap(a) + UFixed.unwrap(b)); } function subUFixed(UFixed a, UFixed b) pure returns(UFixed) { require(a >= b, "ERROR:UFM-010:NEGATIVE_RESULT"); return UFixed.wrap(UFixed.unwrap(a) - UFixed.unwrap(b)); } function mulUFixed(UFixed a, UFixed b) pure returns(UFixed) { return UFixed.wrap(Math.mulDiv(UFixed.unwrap(a), UFixed.unwrap(b), 10 ** 18)); } function divUFixed(UFixed a, UFixed b) pure returns(UFixed) { require(UFixed.unwrap(b) > 0, "ERROR:UFM-020:DIVISOR_ZERO"); return UFixed.wrap( Math.mulDiv( UFixed.unwrap(a), 10 ** 18, UFixed.unwrap(b))); } function gtUFixed(UFixed a, UFixed b) pure returns(bool isGreaterThan) { return UFixed.unwrap(a) > UFixed.unwrap(b); } function gteUFixed(UFixed a, UFixed b) pure returns(bool isGreaterThan) { return UFixed.unwrap(a) >= UFixed.unwrap(b); } function ltUFixed(UFixed a, UFixed b) pure returns(bool isGreaterThan) { return UFixed.unwrap(a) < UFixed.unwrap(b); } function lteUFixed(UFixed a, UFixed b) pure returns(bool isGreaterThan) { return UFixed.unwrap(a) <= UFixed.unwrap(b); } function eqUFixed(UFixed a, UFixed b) pure returns(bool isEqual) { return UFixed.unwrap(a) == UFixed.unwrap(b); } function gtz(UFixed a) pure returns(bool isZero) { return UFixed.unwrap(a) > 0; } function eqz(UFixed a) pure returns(bool isZero) { return UFixed.unwrap(a) == 0; } function delta(UFixed a, UFixed b) pure returns(UFixed) { if(a > b) { return a - b; } return b - a; } contract UFixedType { enum Rounding { Down, // floor(value) Up, // = ceil(value) HalfUp // = floor(value + 0.5) } int8 public constant EXP = 18; uint256 public constant MULTIPLIER = 10 ** uint256(int256(EXP)); uint256 public constant MULTIPLIER_HALF = MULTIPLIER / 2; Rounding public constant ROUNDING_DEFAULT = Rounding.HalfUp; function decimals() public pure returns(uint256) { return uint8(EXP); } function itof(uint256 a) public pure returns(UFixed) { return UFixed.wrap(a * MULTIPLIER); } function itof(uint256 a, int8 exp) public pure returns(UFixed) { require(EXP + exp >= 0, "ERROR:FM-010:EXPONENT_TOO_SMALL"); require(EXP + exp <= 2 * EXP, "ERROR:FM-011:EXPONENT_TOO_LARGE"); return UFixed.wrap(a * 10 ** uint8(EXP + exp)); } function ftoi(UFixed a) public pure returns(uint256) { return ftoi(a, ROUNDING_DEFAULT); } function ftoi(UFixed a, Rounding rounding) public pure returns(uint256) { if(rounding == Rounding.HalfUp) { return Math.mulDiv(UFixed.unwrap(a) + MULTIPLIER_HALF, 1, MULTIPLIER, Math.Rounding.Down); } else if(rounding == Rounding.Down) { return Math.mulDiv(UFixed.unwrap(a), 1, MULTIPLIER, Math.Rounding.Down); } else { return Math.mulDiv(UFixed.unwrap(a), 1, MULTIPLIER, Math.Rounding.Up); } } }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; import {IERC20Metadata} from "IERC20Metadata.sol"; // needs to be in sync with definition in IInstanceService interface IComponent { function getId() external view returns(uint256); } interface IInstanceServiceFacade { // needs to be in sync with definition in IComponent enum ComponentType { Oracle, Product, Riskpool } // needs to be in sync with definition in IComponent enum ComponentState { Created, Proposed, Declined, Active, Paused, Suspended, Archived } // needs to be in sync with definition in IBundle enum BundleState { Active, Locked, Closed, Burned } // needs to be in sync with definition in IBundle struct Bundle { uint256 id; uint256 riskpoolId; uint256 tokenId; BundleState state; bytes filter; // required conditions for applications to be considered for collateralization by this bundle uint256 capital; // net investment capital amount (<= balance) uint256 lockedCapital; // capital amount linked to collateralizaion of non-closed policies (<= capital) uint256 balance; // total amount of funds: net investment capital + net premiums - payouts uint256 createdAt; uint256 updatedAt; } function getChainId() external view returns(uint256 chainId); function getInstanceId() external view returns(bytes32 instanceId); function getInstanceOperator() external view returns(address instanceOperator); function getComponent(uint256 componentId) external view returns(IComponent component); function getComponentType(uint256 componentId) external view returns(ComponentType componentType); function getComponentState(uint256 componentId) external view returns(ComponentState componentState); function getComponentToken(uint256 componentId) external view returns(IERC20Metadata token); function getBundle(uint256 bundleId) external view returns(Bundle memory bundle); }
{ "evmVersion": "istanbul", "optimizer": { "enabled": true, "runs": 200 }, "libraries": { "StakingMessageHelper.sol": {} }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EIP712_DOMAIN_NAME","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EIP712_DOMAIN_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EIP712_RESTAKE_TYPE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EIP712_STAKE_TYPE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"NftId","name":"stakeId","type":"uint96"},{"internalType":"NftId","name":"newTarget","type":"uint96"},{"internalType":"bytes32","name":"signatureId","type":"bytes32"}],"name":"getRestakeDigest","outputs":[{"internalType":"bytes32","name":"digest","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"digest","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"getSigner","outputs":[{"internalType":"address","name":"signer","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"NftId","name":"target","type":"uint96"},{"internalType":"uint256","name":"dipAmount","type":"uint256"},{"internalType":"bytes32","name":"signatureId","type":"bytes32"}],"name":"getStakeDigest","outputs":[{"internalType":"bytes32","name":"digest","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"NftId","name":"stakeId","type":"uint96"},{"internalType":"NftId","name":"newTarget","type":"uint96"},{"internalType":"bytes32","name":"signatureId","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"processRestakeSignature","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"NftId","name":"target","type":"uint96"},{"internalType":"uint256","name":"dipAmount","type":"uint256"},{"internalType":"bytes32","name":"signatureId","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"processStakeSignature","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
61014060405234801561001157600080fd5b50604080518082018252600f81526e45746865726973635374616b696e6760881b6020808301918252835180850190945260018452603160f81b908401528151902060e08190527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc66101008190524660a0529192917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6100f68184846040805160208101859052908101839052606081018290524660808201523060a082015260009060c0016040516020818303038152906040528051906020012090509392505050565b6080523060c052610120525061010b92505050565b60805160a05160c05160e0516101005161012051610bc761015a6000396000610567015260006105b601526000610591015260006104ea015260006105140152600061053e0152610bc76000f3fe608060405234801561001057600080fd5b50600436106100935760003560e01c80639f696374116100665780639f69637414610108578063a5de10b014610110578063e94a62ea14610123578063f7b2ec0d14610136578063fd0702961461016157600080fd5b80632bb7bedd14610098578063559f196f146100be5780635cc33321146100d35780638452a19614610100575b600080fd5b6100ab6100a6366004610876565b61018f565b6040519081526020015b60405180910390f35b6100d16100cc36600461090b565b610225565b005b6100f3604051806040016040528060018152602001603160f81b81525081565b6040516100b591906109ae565b6100f3610259565b6100f3610275565b6100ab61011e3660046109e1565b610291565b6100d1610131366004610a14565b6102fd565b610149610144366004610a6e565b61030a565b6040516001600160a01b0390911681526020016100b5565b6100f36040518060400160405280600f81526020016e45746865726973635374616b696e6760881b81525081565b6000806040518060600160405280603c8152602001610b1c603c91396040516020016101bb9190610aba565b60408051601f198184030181528282528051602091820120908301526001600160601b0380881691830191909152851660608201526080810184905260a0015b60405160208183030381529060405280519060200120905061021c81610354565b95945050505050565b600061023286868661018f565b9050600061024182858561030a565b905061024f888286866103a8565b5050505050505050565b6040518060600160405280603c8152602001610b1c603c913981565b6040518060600160405280603a8152602001610b58603a913981565b6000806040518060600160405280603a8152602001610b58603a91396040516020016102bd9190610aba565b60408051601f198184030181528282528051602091820120908301526001600160601b03871690820152606081018590526080810184905260a0016101fb565b6000610232868686610291565b600061034c8484848080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506104b992505050565b949350505050565b60006103a26103616104dd565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b92915050565b600082826040516020016103bd929190610ad6565b60408051601f19818403018152918152815160209283012060008181529283905291205490915060ff16156104395760405162461bcd60e51b815260206004820152601c60248201527f4552524f523a534d482d3030313a5349474e41545552455f555345440000000060448201526064015b60405180910390fd5b836001600160a01b0316856001600160a01b03161461049a5760405162461bcd60e51b815260206004820152601f60248201527f4552524f523a534d482d3030323a5349474e41545552455f494e56414c4944006044820152606401610430565b6000908152602081905260409020805460ff1916600117905550505050565b60008060006104c88585610604565b915091506104d581610649565b509392505050565b6000306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561053657507f000000000000000000000000000000000000000000000000000000000000000046145b1561056057507f000000000000000000000000000000000000000000000000000000000000000090565b50604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091527f0000000000000000000000000000000000000000000000000000000000000000828401527f000000000000000000000000000000000000000000000000000000000000000060608301524660808301523060a0808401919091528351808403909101815260c0909201909252805191012090565b600080825160410361063a5760208301516040840151606085015160001a61062e87828585610796565b94509450505050610642565b506000905060025b9250929050565b600081600481111561065d5761065d610b05565b036106655750565b600181600481111561067957610679610b05565b036106c65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610430565b60028160048111156106da576106da610b05565b036107275760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610430565b600381600481111561073b5761073b610b05565b036107935760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610430565b50565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156107cd5750600090506003610851565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610821573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661084a57600060019250925050610851565b9150600090505b94509492505050565b80356001600160601b038116811461087157600080fd5b919050565b60008060006060848603121561088b57600080fd5b6108948461085a565b92506108a26020850161085a565b9150604084013590509250925092565b80356001600160a01b038116811461087157600080fd5b60008083601f8401126108db57600080fd5b50813567ffffffffffffffff8111156108f357600080fd5b60208301915083602082850101111561064257600080fd5b60008060008060008060a0878903121561092457600080fd5b61092d876108b2565b955061093b6020880161085a565b94506109496040880161085a565b935060608701359250608087013567ffffffffffffffff81111561096c57600080fd5b61097889828a016108c9565b979a9699509497509295939492505050565b60005b838110156109a557818101518382015260200161098d565b50506000910152565b60208152600082518060208401526109cd81604085016020870161098a565b601f01601f19169190910160400192915050565b6000806000606084860312156109f657600080fd5b6109ff8461085a565b95602085013595506040909401359392505050565b60008060008060008060a08789031215610a2d57600080fd5b610a36876108b2565b9550610a446020880161085a565b94506040870135935060608701359250608087013567ffffffffffffffff81111561096c57600080fd5b600080600060408486031215610a8357600080fd5b83359250602084013567ffffffffffffffff811115610aa157600080fd5b610aad868287016108c9565b9497909650939450505050565b60008251610acc81846020870161098a565b9190910192915050565b60208152816020820152818360408301376000818301604090810191909152601f909201601f19160101919050565b634e487b7160e01b600052602160045260246000fdfe52657374616b652875696e743936207374616b6549642c75696e743936206e65775461726765742c62797465733332207369676e61747572654964295374616b652875696e743936207461726765742c75696e7432353620646970416d6f756e742c62797465733332207369676e6174757265496429a2646970667358221220835d35a7b483d657c0594fb493834a8d35d1bd95c06189aba98080c93ab87d1f64736f6c63430008130033
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100935760003560e01c80639f696374116100665780639f69637414610108578063a5de10b014610110578063e94a62ea14610123578063f7b2ec0d14610136578063fd0702961461016157600080fd5b80632bb7bedd14610098578063559f196f146100be5780635cc33321146100d35780638452a19614610100575b600080fd5b6100ab6100a6366004610876565b61018f565b6040519081526020015b60405180910390f35b6100d16100cc36600461090b565b610225565b005b6100f3604051806040016040528060018152602001603160f81b81525081565b6040516100b591906109ae565b6100f3610259565b6100f3610275565b6100ab61011e3660046109e1565b610291565b6100d1610131366004610a14565b6102fd565b610149610144366004610a6e565b61030a565b6040516001600160a01b0390911681526020016100b5565b6100f36040518060400160405280600f81526020016e45746865726973635374616b696e6760881b81525081565b6000806040518060600160405280603c8152602001610b1c603c91396040516020016101bb9190610aba565b60408051601f198184030181528282528051602091820120908301526001600160601b0380881691830191909152851660608201526080810184905260a0015b60405160208183030381529060405280519060200120905061021c81610354565b95945050505050565b600061023286868661018f565b9050600061024182858561030a565b905061024f888286866103a8565b5050505050505050565b6040518060600160405280603c8152602001610b1c603c913981565b6040518060600160405280603a8152602001610b58603a913981565b6000806040518060600160405280603a8152602001610b58603a91396040516020016102bd9190610aba565b60408051601f198184030181528282528051602091820120908301526001600160601b03871690820152606081018590526080810184905260a0016101fb565b6000610232868686610291565b600061034c8484848080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506104b992505050565b949350505050565b60006103a26103616104dd565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b92915050565b600082826040516020016103bd929190610ad6565b60408051601f19818403018152918152815160209283012060008181529283905291205490915060ff16156104395760405162461bcd60e51b815260206004820152601c60248201527f4552524f523a534d482d3030313a5349474e41545552455f555345440000000060448201526064015b60405180910390fd5b836001600160a01b0316856001600160a01b03161461049a5760405162461bcd60e51b815260206004820152601f60248201527f4552524f523a534d482d3030323a5349474e41545552455f494e56414c4944006044820152606401610430565b6000908152602081905260409020805460ff1916600117905550505050565b60008060006104c88585610604565b915091506104d581610649565b509392505050565b6000306001600160a01b037f000000000000000000000000ffdc7c357363bcf0c4a142dfb61359322028523f1614801561053657507f000000000000000000000000000000000000000000000000000000000000000146145b1561056057507f4068663e1b8b11486c23893c28f9bd871acaf9257f3f325b7b7550776a8aae7390565b50604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6020808301919091527fb5f2cb8c56dc414bc883b324f248ce0279cad8eb447e9db356d950578504be3e828401527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608301524660808301523060a0808401919091528351808403909101815260c0909201909252805191012090565b600080825160410361063a5760208301516040840151606085015160001a61062e87828585610796565b94509450505050610642565b506000905060025b9250929050565b600081600481111561065d5761065d610b05565b036106655750565b600181600481111561067957610679610b05565b036106c65760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610430565b60028160048111156106da576106da610b05565b036107275760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610430565b600381600481111561073b5761073b610b05565b036107935760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610430565b50565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156107cd5750600090506003610851565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610821573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661084a57600060019250925050610851565b9150600090505b94509492505050565b80356001600160601b038116811461087157600080fd5b919050565b60008060006060848603121561088b57600080fd5b6108948461085a565b92506108a26020850161085a565b9150604084013590509250925092565b80356001600160a01b038116811461087157600080fd5b60008083601f8401126108db57600080fd5b50813567ffffffffffffffff8111156108f357600080fd5b60208301915083602082850101111561064257600080fd5b60008060008060008060a0878903121561092457600080fd5b61092d876108b2565b955061093b6020880161085a565b94506109496040880161085a565b935060608701359250608087013567ffffffffffffffff81111561096c57600080fd5b61097889828a016108c9565b979a9699509497509295939492505050565b60005b838110156109a557818101518382015260200161098d565b50506000910152565b60208152600082518060208401526109cd81604085016020870161098a565b601f01601f19169190910160400192915050565b6000806000606084860312156109f657600080fd5b6109ff8461085a565b95602085013595506040909401359392505050565b60008060008060008060a08789031215610a2d57600080fd5b610a36876108b2565b9550610a446020880161085a565b94506040870135935060608701359250608087013567ffffffffffffffff81111561096c57600080fd5b600080600060408486031215610a8357600080fd5b83359250602084013567ffffffffffffffff811115610aa157600080fd5b610aad868287016108c9565b9497909650939450505050565b60008251610acc81846020870161098a565b9190910192915050565b60208152816020820152818360408301376000818301604090810191909152601f909201601f19160101919050565b634e487b7160e01b600052602160045260246000fdfe52657374616b652875696e743936207374616b6549642c75696e743936206e65775461726765742c62797465733332207369676e61747572654964295374616b652875696e743936207461726765742c75696e7432353620646970416d6f756e742c62797465733332207369676e6174757265496429a2646970667358221220835d35a7b483d657c0594fb493834a8d35d1bd95c06189aba98080c93ab87d1f64736f6c63430008130033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 27 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.