Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
20178193 | 166 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0xD3494713...Ac8C6Fd65 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
L1CrossDomainMessenger
Compiler Version
v0.8.15+commit.e14f2714
Optimization Enabled:
Yes with 999999 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "src/libraries/Predeploys.sol"; import { OptimismPortal } from "src/L1/OptimismPortal.sol"; import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { SuperchainConfig } from "src/L1/SuperchainConfig.sol"; /// @custom:proxied /// @title L1CrossDomainMessenger /// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible /// for sending and receiving data on the L1 side. Users are encouraged to use this /// interface instead of interacting with lower-level contracts directly. contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver { /// @notice Contract of the SuperchainConfig. SuperchainConfig public superchainConfig; /// @notice Contract of the OptimismPortal. /// @custom:network-specific OptimismPortal public portal; /// @notice Semantic version. /// @custom:semver 2.3.0 string public constant version = "2.3.0"; /// @notice Constructs the L1CrossDomainMessenger contract. constructor() CrossDomainMessenger() { initialize({ _superchainConfig: SuperchainConfig(address(0)), _portal: OptimismPortal(payable(address(0))) }); } /// @notice Initializes the contract. /// @param _superchainConfig Contract of the SuperchainConfig contract on this network. /// @param _portal Contract of the OptimismPortal contract on this network. function initialize(SuperchainConfig _superchainConfig, OptimismPortal _portal) public initializer { superchainConfig = _superchainConfig; portal = _portal; __CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) }); } /// @notice Getter function for the OptimismPortal contract on this chain. /// Public getter is legacy and will be removed in the future. Use `portal()` instead. /// @return Contract of the OptimismPortal on this chain. /// @custom:legacy function PORTAL() external view returns (OptimismPortal) { return portal; } /// @inheritdoc CrossDomainMessenger function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override { portal.depositTransaction{ value: _value }({ _to: _to, _value: _value, _gasLimit: _gasLimit, _isCreation: false, _data: _data }); } /// @inheritdoc CrossDomainMessenger function _isOtherMessenger() internal view override returns (bool) { return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger); } /// @inheritdoc CrossDomainMessenger function _isUnsafeTarget(address _target) internal view override returns (bool) { return _target == address(this) || _target == address(portal); } /// @inheritdoc CrossDomainMessenger function paused() public view override returns (bool) { return superchainConfig.paused(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Predeploys /// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system. library Predeploys { /// @notice Address of the L2ToL1MessagePasser predeploy. address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /// @notice Address of the L2CrossDomainMessenger predeploy. address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /// @notice Address of the L2StandardBridge predeploy. address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; /// @notice Address of the L2ERC721Bridge predeploy. address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; //// @notice Address of the SequencerFeeWallet predeploy. address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /// @notice Address of the OptimismMintableERC20Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /// @notice Address of the OptimismMintableERC721Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /// @notice Address of the L1Block predeploy. address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /// @notice Address of the GasPriceOracle predeploy. Includes fee information /// and helpers for computing the L1 portion of the transaction fee. address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /// @custom:legacy /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger /// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /// @custom:legacy /// @notice Address of the DeployerWhitelist predeploy. No longer active. address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /// @notice Address of the canonical WETH9 contract. address internal constant WETH9 = 0x4200000000000000000000000000000000000006; /// @custom:legacy /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the /// state trie as of the Bedrock upgrade. Contract has been locked and write functions /// can no longer be accessed. address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /// @custom:legacy /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy /// instead, which exposes more information about the L1 state. address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /// @custom:legacy /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated /// L2ToL1MessagePasser contract instead. address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /// @notice Address of the ProxyAdmin predeploy. address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /// @notice Address of the BaseFeeVault predeploy. address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /// @notice Address of the L1FeeVault predeploy. address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /// @notice Address of the GovernanceToken predeploy. address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; /// @notice Address of the SchemaRegistry predeploy. address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020; /// @notice Address of the EAS predeploy. address internal constant EAS = 0x4200000000000000000000000000000000000021; /// @notice Address of the MultiCall3 predeploy. address internal constant MultiCall3 = 0xcA11bde05977b3631167028862bE2a173976CA11; /// @notice Address of the Create2Deployer predeploy. address internal constant Create2Deployer = 0x13b0D85CcB8bf860b6b79AF3029fCA081AE9beF2; /// @notice Address of the Safe_v130 predeploy. address internal constant Safe_v130 = 0x69f4D1788e39c87893C980c06EdF4b7f686e2938; /// @notice Address of the SafeL2_v130 predeploy. address internal constant SafeL2_v130 = 0xfb1bffC9d739B8D520DaF37dF666da4C687191EA; /// @notice Address of the MultiSendCallOnly_v130 predeploy. address internal constant MultiSendCallOnly_v130 = 0xA1dabEF33b3B82c7814B6D82A79e50F4AC44102B; /// @notice Address of the SafeSingletonFactory predeploy. address internal constant SafeSingletonFactory = 0x914d7Fec6aaC8cd542e72Bca78B30650d45643d7; /// @notice Address of the DeterministicDeploymentProxy predeploy. address internal constant DeterministicDeploymentProxy = 0x4e59b44847b379578588920cA78FbF26c0B4956C; /// @notice Address of the MultiSend_v130 predeploy. address internal constant MultiSend_v130 = 0x998739BFdAAdde7C933B942a68053933098f9EDa; /// @notice Address of the Permit2 predeploy. address internal constant Permit2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3; /// @notice Address of the SenderCreator predeploy. address internal constant SenderCreator = 0x7fc98430eAEdbb6070B35B39D798725049088348; /// @notice Address of the EntryPoint predeploy. address internal constant EntryPoint = 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { SafeCall } from "src/libraries/SafeCall.sol"; import { L2OutputOracle } from "src/L1/L2OutputOracle.sol"; import { SystemConfig } from "src/L1/SystemConfig.sol"; import { SuperchainConfig } from "src/L1/SuperchainConfig.sol"; import { Constants } from "src/libraries/Constants.sol"; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol"; import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol"; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:proxied /// @title OptimismPortal /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1 /// and L2. Messages sent directly to the OptimismPortal have no form of replayability. /// Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface. contract OptimismPortal is Initializable, ResourceMetering, ISemver { /// @notice Represents a proven withdrawal. /// @custom:field outputRoot Root of the L2 output this was proven against. /// @custom:field timestamp Timestamp at whcih the withdrawal was proven. /// @custom:field l2OutputIndex Index of the output this was proven against. struct ProvenWithdrawal { bytes32 outputRoot; uint128 timestamp; uint128 l2OutputIndex; } /// @notice Version of the deposit event. uint256 internal constant DEPOSIT_VERSION = 0; /// @notice The L2 gas limit set when eth is deposited using the receive() function. uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /// @notice Address of the L2 account which initiated a withdrawal in this transaction. /// If the of this variable is the default L2 sender address, then we are NOT inside of /// a call to finalizeWithdrawalTransaction. address public l2Sender; /// @notice A list of withdrawal hashes which have been successfully finalized. mapping(bytes32 => bool) public finalizedWithdrawals; /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data. mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals; /// @custom:legacy /// @custom:spacer paused /// @notice Spacer for backwards compatibility. bool private spacer_53_0_1; /// @notice Contract of the Superchain Config. SuperchainConfig public superchainConfig; /// @notice Contract of the L2OutputOracle. /// @custom:network-specific L2OutputOracle public l2Oracle; /// @notice Contract of the SystemConfig. /// @custom:network-specific SystemConfig public systemConfig; /// @notice Emitted when a transaction is deposited from L1 to L2. /// The parameters of this event are read by the rollup node and used to derive deposit /// transactions on L2. /// @param from Address that triggered the deposit transaction. /// @param to Address that the deposit transaction is directed to. /// @param version Version of this deposit transaction event. /// @param opaqueData ABI encoded deposit data to be parsed off-chain. event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData); /// @notice Emitted when a withdrawal transaction is proven. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param from Address that triggered the withdrawal transaction. /// @param to Address that the withdrawal transaction is directed to. event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to); /// @notice Emitted when a withdrawal transaction is finalized. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param success Whether the withdrawal transaction was successful. event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success); /// @notice Reverts when paused. modifier whenNotPaused() { require(paused() == false, "OptimismPortal: paused"); _; } /// @notice Semantic version. /// @custom:semver 2.5.0 string public constant version = "2.5.0"; /// @notice Constructs the OptimismPortal contract. constructor() { initialize({ _l2Oracle: L2OutputOracle(address(0)), _systemConfig: SystemConfig(address(0)), _superchainConfig: SuperchainConfig(address(0)) }); } /// @notice Initializer. /// @param _l2Oracle Contract of the L2OutputOracle. /// @param _systemConfig Contract of the SystemConfig. /// @param _superchainConfig Contract of the SuperchainConfig. function initialize( L2OutputOracle _l2Oracle, SystemConfig _systemConfig, SuperchainConfig _superchainConfig ) public initializer { l2Oracle = _l2Oracle; systemConfig = _systemConfig; superchainConfig = _superchainConfig; if (l2Sender == address(0)) { l2Sender = Constants.DEFAULT_L2_SENDER; } __ResourceMetering_init(); } /// @notice Getter function for the contract of the L2OutputOracle on this chain. /// Public getter is legacy and will be removed in the future. Use `l2Oracle()` instead. /// @return Contract of the L2OutputOracle on this chain. /// @custom:legacy function L2_ORACLE() external view returns (L2OutputOracle) { return l2Oracle; } /// @notice Getter function for the contract of the SystemConfig on this chain. /// Public getter is legacy and will be removed in the future. Use `systemConfig()` instead. /// @return Contract of the SystemConfig on this chain. /// @custom:legacy function SYSTEM_CONFIG() external view returns (SystemConfig) { return systemConfig; } /// @notice Getter function for the address of the guardian. /// Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead. /// @return Address of the guardian. /// @custom:legacy function GUARDIAN() external view returns (address) { return guardian(); } /// @notice Getter function for the address of the guardian. /// Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead. /// @return Address of the guardian. /// @custom:legacy function guardian() public view returns (address) { return superchainConfig.guardian(); } /// @notice Getter for the current paused status. /// @return paused_ Whether or not the contract is paused. function paused() public view returns (bool paused_) { paused_ = superchainConfig.paused(); } /// @notice Computes the minimum gas limit for a deposit. /// The minimum gas limit linearly increases based on the size of the calldata. /// This is to prevent users from creating L2 resource usage without paying for it. /// This function can be used when interacting with the portal to ensure forwards /// compatibility. /// @param _byteCount Number of bytes in the calldata. /// @return The minimum gas limit for a deposit. function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) { return _byteCount * 16 + 21000; } /// @notice Accepts value so that users can send ETH directly to this contract and have the /// funds be deposited to their address on L2. This is intended as a convenience /// function for EOAs. Contracts should call the depositTransaction() function directly /// otherwise any deposited funds will be lost due to address aliasing. // solhint-disable-next-line ordering receive() external payable { depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes("")); } /// @notice Accepts ETH value without triggering a deposit to L2. /// This function mainly exists for the sake of the migration between the legacy /// Optimism system and Bedrock. function donateETH() external payable { // Intentionally empty. } /// @notice Getter for the resource config. /// Used internally by the ResourceMetering contract. /// The SystemConfig is the source of truth for the resource config. /// @return ResourceMetering ResourceConfig function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) { return systemConfig.resourceConfig(); } /// @notice Proves a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. /// @param _l2OutputIndex L2 output index to prove against. /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root. /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract. function proveWithdrawalTransaction( Types.WithdrawalTransaction memory _tx, uint256 _l2OutputIndex, Types.OutputRootProof calldata _outputRootProof, bytes[] calldata _withdrawalProof ) external whenNotPaused { // Prevent users from creating a deposit transaction where this address is the message // sender on L2. Because this is checked here, we do not need to check again in // `finalizeWithdrawalTransaction`. require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract"); // Get the output root and load onto the stack to prevent multiple mloads. This will // revert if there is no output root for the given block number. bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot; // Verify that the output root can be generated with the elements in the proof. require( outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof" ); // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // We generally want to prevent users from proving the same withdrawal multiple times // because each successive proof will update the timestamp. A malicious user can take // advantage of this to prevent other users from finalizing their withdrawal. However, // since withdrawals are proven before an output root is finalized, we need to allow users // to re-prove their withdrawal only in the case that the output root for their specified // output index has been updated. require( provenWithdrawal.timestamp == 0 || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot, "OptimismPortal: withdrawal hash has already been proven" ); // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract. // Refer to the Solidity documentation for more information on how storage layouts are // computed for mappings. bytes32 storageKey = keccak256( abi.encode( withdrawalHash, uint256(0) // The withdrawals mapping is at the first slot in the layout. ) ); // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore // be relayed on L1. require( SecureMerkleTrie.verifyInclusionProof( abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot ), "OptimismPortal: invalid withdrawal inclusion proof" ); // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be // proven once unless it is submitted again with a different outputRoot. provenWithdrawals[withdrawalHash] = ProvenWithdrawal({ outputRoot: outputRoot, timestamp: uint128(block.timestamp), l2OutputIndex: uint128(_l2OutputIndex) }); // Emit a `WithdrawalProven` event. emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target); } /// @notice Finalizes a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused { // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other // than the default value when a withdrawal transaction is being finalized. This check is // a defacto reentrancy guard. require( l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction" ); // Grab the proven withdrawal from the `provenWithdrawals` map. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have // a timestamp of zero. require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet"); // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of // safety against weird bugs in the proving step. require( provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(), "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp" ); // A proven withdrawal must wait at least the finalization period before it can be // finalized. This waiting period can elapse in parallel with the waiting period for the // output the withdrawal was proven against. In effect, this means that the minimum // withdrawal time is proposal submission time + finalization period. require( _isFinalizationPeriodElapsed(provenWithdrawal.timestamp), "OptimismPortal: proven withdrawal finalization period has not elapsed" ); // Grab the OutputProposal from the L2OutputOracle, will revert if the output that // corresponds to the given index has not been proposed yet. Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex); // Check that the output root that was used to prove the withdrawal is the same as the // current output root for the given output index. An output root may change if it is // deleted by the challenger address and then re-proposed. require( proposal.outputRoot == provenWithdrawal.outputRoot, "OptimismPortal: output root proven is not the same as current output root" ); // Check that the output proposal has also been finalized. require( _isFinalizationPeriodElapsed(proposal.timestamp), "OptimismPortal: output proposal finalization period has not elapsed" ); // Check that this withdrawal has not already been finalized, this is replay protection. require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized"); // Mark the withdrawal as finalized so it can't be replayed. finalizedWithdrawals[withdrawalHash] = true; // Set the l2Sender so contracts know who triggered this withdrawal on L2. l2Sender = _tx.sender; // Trigger the call to the target contract. We use a custom low level method // SafeCall.callWithMinGas to ensure two key properties // 1. Target contracts cannot force this call to run out of gas by returning a very large // amount of data (and this is OK because we don't care about the returndata here). // 2. The amount of gas provided to the execution context of the target is at least the // gas limit specified by the user. If there is not enough gas in the current context // to accomplish this, `callWithMinGas` will revert. bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data); // Reset the l2Sender back to the default value. l2Sender = Constants.DEFAULT_L2_SENDER; // All withdrawals are immediately finalized. Replayability can // be achieved through contracts built on top of this contract emit WithdrawalFinalized(withdrawalHash, success); // Reverting here is useful for determining the exact gas cost to successfully execute the // sub call to the target contract if the minimum gas limit specified by the user would not // be sufficient to execute the sub call. if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) { revert("OptimismPortal: withdrawal failed"); } } /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in /// deriving deposit transactions. Note that if a deposit is made by a contract, its /// address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider /// using the CrossDomainMessenger contracts for a simpler developer experience. /// @param _to Target address on L2. /// @param _value ETH value to send to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function depositTransaction( address _to, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public payable metered(_gasLimit) { // Just to be safe, make sure that people specify address(0) as the target when doing // contract creations. if (_isCreation) { require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract"); } // Prevent depositing transactions that have too small of a gas limit. Users should pay // more for more resource usage. require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small"); // Prevent the creation of deposit transactions that have too much calldata. This gives an // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure // that the transaction can fit into the p2p network policy of 128kb even though deposit // transactions are not gossipped over the p2p network. require(_data.length <= 120_000, "OptimismPortal: data too large"); // Transform the from-address to its alias if the caller is a contract. address from = msg.sender; if (msg.sender != tx.origin) { from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } // Compute the opaque data that will be emitted as part of the TransactionDeposited event. // We use opaque data so that we can update the TransactionDeposited event in the future // without breaking the current interface. bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /// @notice Determine if a given output is finalized. /// Reverts if the call to l2Oracle.getL2Output reverts. /// Returns a boolean otherwise. /// @param _l2OutputIndex Index of the L2 output to check. /// @return Whether or not the output is finalized. function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) { return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp); } /// @notice Determines whether the finalization period has elapsed with respect to /// the provided block timestamp. /// @param _timestamp Timestamp to check. /// @return Whether or not the finalization period has elapsed. function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) { return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS(); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { SafeCall } from "src/libraries/SafeCall.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { Encoding } from "src/libraries/Encoding.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:legacy /// @title CrossDomainMessengerLegacySpacer0 /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the /// libAddressManager variable used to exist. Must be the first contract in the inheritance /// tree of the CrossDomainMessenger. contract CrossDomainMessengerLegacySpacer0 { /// @custom:legacy /// @custom:spacer libAddressManager /// @notice Spacer for backwards compatibility. address private spacer_0_0_20; } /// @custom:legacy /// @title CrossDomainMessengerLegacySpacer1 /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the /// PausableUpgradable and OwnableUpgradeable variables used to exist. Must be /// the third contract in the inheritance tree of the CrossDomainMessenger. contract CrossDomainMessengerLegacySpacer1 { /// @custom:legacy /// @custom:spacer ContextUpgradable's __gap /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// ContextUpgradable. uint256[50] private spacer_1_0_1600; /// @custom:legacy /// @custom:spacer OwnableUpgradeable's _owner /// @notice Spacer for backwards compatibility. /// Come from OpenZeppelin OwnableUpgradeable. address private spacer_51_0_20; /// @custom:legacy /// @custom:spacer OwnableUpgradeable's __gap /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// OwnableUpgradeable. uint256[49] private spacer_52_0_1568; /// @custom:legacy /// @custom:spacer PausableUpgradable's _paused /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// PausableUpgradable. bool private spacer_101_0_1; /// @custom:legacy /// @custom:spacer PausableUpgradable's __gap /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// PausableUpgradable. uint256[49] private spacer_102_0_1568; /// @custom:legacy /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field. /// @notice Spacer for backwards compatibility. uint256 private spacer_151_0_32; /// @custom:legacy /// @custom:spacer ReentrancyGuardUpgradeable's __gap /// @notice Spacer for backwards compatibility. uint256[49] private spacer_152_0_1568; /// @custom:legacy /// @custom:spacer blockedMessages /// @notice Spacer for backwards compatibility. mapping(bytes32 => bool) private spacer_201_0_32; /// @custom:legacy /// @custom:spacer relayedMessages /// @notice Spacer for backwards compatibility. mapping(bytes32 => bool) private spacer_202_0_32; } /// @custom:upgradeable /// @title CrossDomainMessenger /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 /// cross-chain messenger contracts. It's designed to be a universal interface that only /// needs to be extended slightly to provide low-level message passing functionality on each /// chain it's deployed on. Currently only designed for message passing between two paired /// chains and does not support one-to-many interactions. /// Any changes to this contract MUST result in a semver bump for contracts that inherit it. abstract contract CrossDomainMessenger is CrossDomainMessengerLegacySpacer0, Initializable, CrossDomainMessengerLegacySpacer1 { /// @notice Current message version identifier. uint16 public constant MESSAGE_VERSION = 1; /// @notice Constant overhead added to the base gas for a message. uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /// @notice Numerator for dynamic overhead added to the base gas for a message. uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /// @notice Denominator for dynamic overhead added to the base gas for a message. uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /// @notice Extra gas added to base gas for each byte of calldata in a message. uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /// @notice Gas reserved for performing the external call in `relayMessage`. uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. uint64 public constant RELAY_RESERVED_GAS = 40_000; /// @notice Gas reserved for the execution between the `hasMinGas` check and the external /// call in `relayMessage`. uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only /// be present in this mapping if it has successfully been relayed on this chain, and /// can therefore not be relayed again. mapping(bytes32 => bool) public successfulMessages; /// @notice Address of the sender of the currently executing message on the other chain. If the /// value of this variable is the default value (0x00000000...dead) then no message is /// currently being executed. Use the xDomainMessageSender getter which will throw an /// error if this is the case. address internal xDomainMsgSender; /// @notice Nonce for the next message to be sent, without the message version applied. Use the /// messageNonce getter which will insert the message version into the nonce to give you /// the actual nonce to be used for the message. uint240 internal msgNonce; /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be /// executed at least once. A message will not be present in this mapping if it /// successfully executed on the first attempt. mapping(bytes32 => bool) public failedMessages; /// @notice CrossDomainMessenger contract on the other chain. /// @custom:network-specific CrossDomainMessenger public otherMessenger; /// @notice Reserve extra slots in the storage layout for future upgrades. /// A gap size of 43 was chosen here, so that the first slot used in a child contract /// would be 1 plus a multiple of 50. uint256[43] private __gap; /// @notice Emitted whenever a message is sent to the other chain. /// @param target Address of the recipient of the message. /// @param sender Address of the sender of the message. /// @param message Message to trigger the recipient address with. /// @param messageNonce Unique nonce attached to the message. /// @param gasLimit Minimum gas limit that the message can be executed with. event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit); /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the /// SentMessage event without breaking the ABI of this contract, this is good enough. /// @param sender Address of the sender of the message. /// @param value ETH value sent along with the message to the recipient. event SentMessageExtension1(address indexed sender, uint256 value); /// @notice Emitted whenever a message is successfully relayed on this chain. /// @param msgHash Hash of the message that was relayed. event RelayedMessage(bytes32 indexed msgHash); /// @notice Emitted whenever a message fails to be relayed on this chain. /// @param msgHash Hash of the message that failed to be relayed. event FailedRelayedMessage(bytes32 indexed msgHash); /// @notice Sends a message to some target address on the other chain. Note that if the call /// always reverts, then the message will be unrelayable, and any ETH sent will be /// permanently locked. The same will occur if the target on the other chain is /// considered unsafe (see the _isUnsafeTarget() function). /// @param _target Target contract or wallet address. /// @param _message Message to trigger the target address with. /// @param _minGasLimit Minimum gas limit that the message can be executed with. function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage({ _to: address(otherMessenger), _gasLimit: baseGas(_message, _minGasLimit), _value: msg.value, _data: abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) }); emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit); emit SentMessageExtension1(msg.sender, msg.value); unchecked { ++msgNonce; } } /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only /// be executed via cross-chain call from the other messenger OR if the message was /// already received once and is currently being replayed. /// @param _nonce Nonce of the message being relayed. /// @param _sender Address of the user who sent the message. /// @param _target Address that the message is targeted at. /// @param _value ETH value to send with the message. /// @param _minGasLimit Minimum amount of gas that the message can be executed with. /// @param _message Message to send to the target. function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { // On L1 this function will check the Portal for its paused status. // On L2 this function should be a no-op, because paused will always return false. require(paused() == false, "CrossDomainMessenger: paused"); (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time"); // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need // to check that the legacy version of the message has not already been relayed. if (version == 0) { bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce); require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed"); } // We use the v1 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address"); require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed"); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed"); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { // This check is identical to one above, but it ensures that the same message cannot be relayed // twice, and adds a layer of protection against rentrancy. assert(successfulMessages[versionedHash] == false); successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /// @notice Retrieves the address of the contract or wallet that initiated the currently /// executing message on the other chain. Will throw an error if there is no message /// currently being executed. Allows the recipient of a call to see who triggered it. /// @return Address of the sender of the currently executing message on the other chain. function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain /// Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead. /// @return CrossDomainMessenger contract on the other chain. /// @custom:legacy function OTHER_MESSENGER() public view returns (CrossDomainMessenger) { return otherMessenger; } /// @notice Retrieves the next message nonce. Message version will be added to the upper two /// bytes of the message nonce. Message version allows us to treat messages as having /// different structures. /// @return Nonce of the next message to be sent, with added message version. function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /// @notice Computes the amount of gas required to guarantee that a given message will be /// received on the other chain without running out of gas. Guaranteeing that a message /// will not run out of gas is important because this ensures that a message can always /// be replayed on the other chain if it fails to execute completely. /// @param _message Message to compute the amount of required gas for. /// @param _minGasLimit Minimum desired gas limit when message goes to target. /// @return Amount of gas required to guarantee message receipt. function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD // Calldata overhead + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) // Dynamic overhead (EIP-150) + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) + RELAY_CALL_OVERHEAD // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) + RELAY_RESERVED_GAS // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) + RELAY_GAS_CHECK_BUFFER; } /// @notice Initializer. /// @param _otherMessenger CrossDomainMessenger contract on the other chain. // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing { // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet, // meaning that this is a fresh contract deployment. // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice. if (xDomainMsgSender == address(0)) { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } otherMessenger = _otherMessenger; } /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child /// contracts because the logic for this depends on the network where the messenger is /// being deployed. /// @param _to Recipient of the message on the other chain. /// @param _gasLimit Minimum gas limit the message can be executed with. /// @param _value Amount of ETH to send with the message. /// @param _data Message data. function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual; /// @notice Checks whether the message is coming from the other messenger. Implemented by child /// contracts because the logic for this depends on the network where the messenger is /// being deployed. /// @return Whether the message is coming from the other messenger. function _isOtherMessenger() internal view virtual returns (bool); /// @notice Checks whether a given call target is a system address that could cause the /// messenger to peform an unsafe action. This is NOT a mechanism for blocking user /// addresses. This is ONLY used to prevent the execution of messages to specific /// system addresses that could cause security issues, e.g., having the /// CrossDomainMessenger send messages to itself. /// @param _target Address of the contract to check. /// @return Whether or not the address is an unsafe system address. function _isUnsafeTarget(address _target) internal view virtual returns (bool); /// @notice This function should return true if the contract is paused. /// On L1 this function will check the SuperchainConfig for its paused status. /// On L2 this function should be a no-op. /// @return Whether or not the contract is paused. function paused() public view virtual returns (bool) { return false; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title ISemver /// @notice ISemver is a simple contract for ensuring that contracts are /// versioned using semantic versioning. interface ISemver { /// @notice Getter for the semantic version of the contract. This is not /// meant to be used onchain but instead meant to be used by offchain /// tooling. /// @return Semver contract version as a string. function version() external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Storage } from "src/libraries/Storage.sol"; /// @custom:audit none This contracts is not yet audited. /// @title SuperchainConfig /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values. contract SuperchainConfig is Initializable, ISemver { /// @notice Enum representing different types of updates. /// @custom:value GUARDIAN Represents an update to the guardian. enum UpdateType { GUARDIAN } /// @notice Whether or not the Superchain is paused. bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1); /// @notice The address of the guardian, which can pause withdrawals from the System. /// It can only be modified by an upgrade. bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1); /// @notice Emitted when the pause is triggered. /// @param identifier A string helping to identify provenance of the pause transaction. event Paused(string identifier); /// @notice Emitted when the pause is lifted. event Unpaused(); /// @notice Emitted when configuration is updated. /// @param updateType Type of update. /// @param data Encoded update data. event ConfigUpdate(UpdateType indexed updateType, bytes data); /// @notice Semantic version. /// @custom:semver 1.1.0 string public constant version = "1.1.0"; /// @notice Constructs the SuperchainConfig contract. constructor() { initialize({ _guardian: address(0), _paused: false }); } /// @notice Initializer. /// @param _guardian Address of the guardian, can pause the OptimismPortal. /// @param _paused Initial paused status. function initialize(address _guardian, bool _paused) public initializer { _setGuardian(_guardian); if (_paused) { _pause("Initializer paused"); } } /// @notice Getter for the guardian address. function guardian() public view returns (address guardian_) { guardian_ = Storage.getAddress(GUARDIAN_SLOT); } /// @notice Getter for the current paused status. function paused() public view returns (bool paused_) { paused_ = Storage.getBool(PAUSED_SLOT); } /// @notice Pauses withdrawals. /// @param _identifier (Optional) A string to identify provenance of the pause transaction. function pause(string memory _identifier) external { require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause"); _pause(_identifier); } /// @notice Pauses withdrawals. /// @param _identifier (Optional) A string to identify provenance of the pause transaction. function _pause(string memory _identifier) internal { Storage.setBool(PAUSED_SLOT, true); emit Paused(_identifier); } /// @notice Unpauses withdrawals. function unpause() external { require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause"); Storage.setBool(PAUSED_SLOT, false); emit Unpaused(); } /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade /// will be required to change the guardian. /// @param _guardian The new guardian address. function _setGuardian(address _guardian) internal { Storage.setAddress(GUARDIAN_SLOT, _guardian); emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title SafeCall /// @notice Perform low level safe calls library SafeCall { /// @notice Performs a low level call without copying any returndata. /// @dev Passes no calldata to the call context. /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } return _success; } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /// @notice Helper function to determine if there is sufficient gas remaining within the context /// to guarantee that the minimum gas requirement for a call will be met as well as /// optionally reserving a specified amount of gas for after the call has concluded. /// @param _minGas The minimum amount of gas that may be passed to the target context. /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution /// of the target context. /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target /// context as well as reserve `_reservedGas` for the caller after the execution of /// the target context. /// @dev !!!!! FOOTGUN ALERT !!!!! /// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the /// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and /// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is /// still possible to self-rekt by initiating a withdrawal with a minimum gas limit /// that does not account for the `memory_expansion_cost` & `code_execution_cost` /// factors of the dynamic cost of the `CALL` opcode. /// 2.) This function should *directly* precede the external call if possible. There is an /// added buffer to account for gas consumed between this check and the call, but it /// is only 5,700 gas. /// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call /// frame may be passed to a subcontext, we need to ensure that the gas will not be /// truncated. /// 4.) Use wisely. This function is not a silver bullet. function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))) } return _hasMinGas; } /// @notice Perform a low level call without copying any returndata. This function /// will revert if the call cannot be performed with the specified minimum /// gas. /// @param _target Address to call /// @param _minGas The minimum amount of gas that may be passed to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Types } from "src/libraries/Types.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:proxied /// @title L2OutputOracle /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a /// commitment to the state of the L2 chain. Other contracts like the OptimismPortal use /// these outputs to verify information about the state of L2. contract L2OutputOracle is Initializable, ISemver { /// @notice The number of the first L2 block recorded in this contract. uint256 public startingBlockNumber; /// @notice The timestamp of the first L2 block recorded in this contract. uint256 public startingTimestamp; /// @notice An array of L2 output proposals. Types.OutputProposal[] internal l2Outputs; /// @notice The interval in L2 blocks at which checkpoints must be submitted. /// @custom:network-specific uint256 public submissionInterval; /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified. /// @custom:network-specific uint256 public l2BlockTime; /// @notice The address of the challenger. Can be updated via upgrade. /// @custom:network-specific address public challenger; /// @notice The address of the proposer. Can be updated via upgrade. /// @custom:network-specific address public proposer; /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized. /// @custom:network-specific uint256 public finalizationPeriodSeconds; /// @notice Emitted when an output is proposed. /// @param outputRoot The output root. /// @param l2OutputIndex The index of the output in the l2Outputs array. /// @param l2BlockNumber The L2 block number of the output root. /// @param l1Timestamp The L1 timestamp when proposed. event OutputProposed( bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp ); /// @notice Emitted when outputs are deleted. /// @param prevNextOutputIndex Next L2 output index before the deletion. /// @param newNextOutputIndex Next L2 output index after the deletion. event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex); /// @notice Semantic version. /// @custom:semver 1.8.0 string public constant version = "1.8.0"; /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as /// in the getting-started config. constructor() { initialize({ _submissionInterval: 1, _l2BlockTime: 1, _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0), _finalizationPeriodSeconds: 0 }); } /// @notice Initializer. /// @param _submissionInterval Interval in blocks at which checkpoints must be submitted. /// @param _l2BlockTime The time per L2 block, in seconds. /// @param _startingBlockNumber The number of the first L2 block. /// @param _startingTimestamp The timestamp of the first L2 block. /// @param _proposer The address of the proposer. /// @param _challenger The address of the challenger. /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal /// can be finalized. function initialize( uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _startingBlockNumber, uint256 _startingTimestamp, address _proposer, address _challenger, uint256 _finalizationPeriodSeconds ) public initializer { require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0"); require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0"); require( _startingTimestamp <= block.timestamp, "L2OutputOracle: starting L2 timestamp must be less than current time" ); submissionInterval = _submissionInterval; l2BlockTime = _l2BlockTime; startingBlockNumber = _startingBlockNumber; startingTimestamp = _startingTimestamp; proposer = _proposer; challenger = _challenger; finalizationPeriodSeconds = _finalizationPeriodSeconds; } /// @notice Getter for the submissionInterval. /// Public getter is legacy and will be removed in the future. Use `submissionInterval` instead. /// @return Submission interval. /// @custom:legacy function SUBMISSION_INTERVAL() external view returns (uint256) { return submissionInterval; } /// @notice Getter for the l2BlockTime. /// Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead. /// @return L2 block time. /// @custom:legacy function L2_BLOCK_TIME() external view returns (uint256) { return l2BlockTime; } /// @notice Getter for the challenger address. /// Public getter is legacy and will be removed in the future. Use `challenger` instead. /// @return Address of the challenger. /// @custom:legacy function CHALLENGER() external view returns (address) { return challenger; } /// @notice Getter for the proposer address. /// Public getter is legacy and will be removed in the future. Use `proposer` instead. /// @return Address of the proposer. /// @custom:legacy function PROPOSER() external view returns (address) { return proposer; } /// @notice Getter for the finalizationPeriodSeconds. /// Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead. /// @return Finalization period in seconds. /// @custom:legacy function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) { return finalizationPeriodSeconds; } /// @notice Deletes all output proposals after and including the proposal that corresponds to /// the given output index. Only the challenger address can delete outputs. /// @param _l2OutputIndex Index of the first L2 output to be deleted. /// All outputs after this output will also be deleted. // solhint-disable-next-line ordering function deleteL2Outputs(uint256 _l2OutputIndex) external { require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs"); // Make sure we're not *increasing* the length of the array. require( _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index" ); // Do not allow deleting any outputs that have already been finalized. require( block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds, "L2OutputOracle: cannot delete outputs that have already been finalized" ); uint256 prevNextL2OutputIndex = nextOutputIndex(); // Use assembly to delete the array elements because Solidity doesn't allow it. assembly { sstore(l2Outputs.slot, _l2OutputIndex) } emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex); } /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. /// The timestamp must be equal to the current value returned by `nextTimestamp()` in /// order to be accepted. This function may only be called by the Proposer. /// @param _outputRoot The L2 output of the checkpoint block. /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot. /// @param _l1BlockHash A block hash which must be included in the current chain. /// @param _l1BlockNumber The block number with the specified block hash. function proposeL2Output( bytes32 _outputRoot, uint256 _l2BlockNumber, bytes32 _l1BlockHash, uint256 _l1BlockNumber ) external payable { require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs"); require( _l2BlockNumber == nextBlockNumber(), "L2OutputOracle: block number must be equal to next expected block number" ); require( computeL2Timestamp(_l2BlockNumber) < block.timestamp, "L2OutputOracle: cannot propose L2 output in the future" ); require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash"); if (_l1BlockHash != bytes32(0)) { // This check allows the proposer to propose an output based on a given L1 block, // without fear that it will be reorged out. // It will also revert if the blockheight provided is more than 256 blocks behind the // chain tip (as the hash will return as zero). This does open the door to a griefing // attack in which the proposer's submission is censored until the block is no longer // retrievable, if the proposer is experiencing this attack it can simply leave out the // blockhash value, and delay submission until it is confident that the L1 block is // finalized. require( blockhash(_l1BlockNumber) == _l1BlockHash, "L2OutputOracle: block hash does not match the hash at the expected height" ); } emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp); l2Outputs.push( Types.OutputProposal({ outputRoot: _outputRoot, timestamp: uint128(block.timestamp), l2BlockNumber: uint128(_l2BlockNumber) }) ); } /// @notice Returns an output by index. Needed to return a struct instead of a tuple. /// @param _l2OutputIndex Index of the output to return. /// @return The output at the given index. function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) { return l2Outputs[_l2OutputIndex]; } /// @notice Returns the index of the L2 output that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return Index of the first checkpoint that commits to the given L2 block number. function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) { // Make sure an output for this block number has actually been proposed. require( _l2BlockNumber <= latestBlockNumber(), "L2OutputOracle: cannot get output for a block that has not been proposed" ); // Make sure there's at least one output proposed. require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet"); // Find the output via binary search, guaranteed to exist. uint256 lo = 0; uint256 hi = l2Outputs.length; while (lo < hi) { uint256 mid = (lo + hi) / 2; if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) { lo = mid + 1; } else { hi = mid; } } return lo; } /// @notice Returns the L2 output proposal that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return First checkpoint that commits to the given L2 block number. function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) { return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)]; } /// @notice Returns the number of outputs that have been proposed. /// Will revert if no outputs have been proposed yet. /// @return The number of outputs that have been proposed. function latestOutputIndex() external view returns (uint256) { return l2Outputs.length - 1; } /// @notice Returns the index of the next output to be proposed. /// @return The index of the next output to be proposed. function nextOutputIndex() public view returns (uint256) { return l2Outputs.length; } /// @notice Returns the block number of the latest submitted L2 output proposal. /// If no proposals been submitted yet then this function will return the starting /// block number. /// @return Latest submitted L2 block number. function latestBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber; } /// @notice Computes the block number of the next L2 block that needs to be checkpointed. /// @return Next L2 block number. function nextBlockNumber() public view returns (uint256) { return latestBlockNumber() + submissionInterval; } /// @notice Returns the L2 timestamp corresponding to a given L2 block number. /// @param _l2BlockNumber The L2 block number of the target block. /// @return L2 timestamp of the given block. function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) { return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; import { Storage } from "src/libraries/Storage.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @title SystemConfig /// @notice The SystemConfig contract is used to manage configuration of an Optimism network. /// All configuration is stored on L1 and picked up by L2 as part of the derviation of /// the L2 chain. contract SystemConfig is OwnableUpgradeable, ISemver { /// @notice Enum representing different types of updates. /// @custom:value BATCHER Represents an update to the batcher hash. /// @custom:value GAS_CONFIG Represents an update to txn fee config on L2. /// @custom:value GAS_LIMIT Represents an update to gas limit on L2. /// @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe /// block distrubution. enum UpdateType { BATCHER, GAS_CONFIG, GAS_LIMIT, UNSAFE_BLOCK_SIGNER } /// @notice Struct representing the addresses of L1 system contracts. These should be the /// proxies and are network specific. struct Addresses { address l1CrossDomainMessenger; address l1ERC721Bridge; address l1StandardBridge; address l2OutputOracle; address optimismPortal; address optimismMintableERC20Factory; } /// @notice Version identifier, used for upgrades. uint256 public constant VERSION = 0; /// @notice Storage slot that the unsafe block signer is stored at. /// Storing it at this deterministic storage slot allows for decoupling the storage /// layout from the way that `solc` lays out storage. The `op-node` uses a storage /// proof to fetch this value. /// @dev NOTE: this value will be migrated to another storage slot in a future version. /// User input should not be placed in storage in this contract until this migration /// happens. It is unlikely that keccak second preimage resistance will be broken, /// but it is better to be safe than sorry. bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner"); /// @notice Storage slot that the L1CrossDomainMessenger address is stored at. bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT = bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1); /// @notice Storage slot that the L1ERC721Bridge address is stored at. bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1); /// @notice Storage slot that the L1StandardBridge address is stored at. bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1); /// @notice Storage slot that the L2OutputOracle address is stored at. bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1); /// @notice Storage slot that the OptimismPortal address is stored at. bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1); /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at. bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT = bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1); /// @notice Storage slot that the batch inbox address is stored at. bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1); /// @notice Storage slot for block at which the op-node can start searching for logs from. bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1); /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation. uint256 public overhead; /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation. uint256 public scalar; /// @notice Identifier for the batcher. /// For version 1 of this configuration, this is represented as an address left-padded /// with zeros to 32 bytes. bytes32 public batcherHash; /// @notice L2 block gas limit. uint64 public gasLimit; /// @notice The configuration for the deposit fee market. /// Used by the OptimismPortal to meter the cost of buying L2 gas on L1. /// Set as internal with a getter so that the struct is returned instead of a tuple. ResourceMetering.ResourceConfig internal _resourceConfig; /// @notice Emitted when configuration is updated. /// @param version SystemConfig version. /// @param updateType Type of update. /// @param data Encoded update data. event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); /// @notice Semantic version. /// @custom:semver 1.12.0 string public constant version = "1.12.0"; /// @notice Constructs the SystemConfig contract. Cannot set /// the owner to `address(0)` due to the Ownable contract's /// implementation, so set it to `address(0xdEaD)` /// @dev START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value /// in the singleton and is skipped by initialize when setting the start block. constructor() { Storage.setUint(START_BLOCK_SLOT, type(uint256).max); initialize({ _owner: address(0xdEaD), _overhead: 0, _scalar: 0, _batcherHash: bytes32(0), _gasLimit: 1, _unsafeBlockSigner: address(0), _config: ResourceMetering.ResourceConfig({ maxResourceLimit: 1, elasticityMultiplier: 1, baseFeeMaxChangeDenominator: 2, minimumBaseFee: 0, systemTxMaxGas: 0, maximumBaseFee: 0 }), _batchInbox: address(0), _addresses: SystemConfig.Addresses({ l1CrossDomainMessenger: address(0), l1ERC721Bridge: address(0), l1StandardBridge: address(0), l2OutputOracle: address(0), optimismPortal: address(0), optimismMintableERC20Factory: address(0) }) }); } /// @notice Initializer. /// The resource config must be set before the require check. /// @param _owner Initial owner of the contract. /// @param _overhead Initial overhead value. /// @param _scalar Initial scalar value. /// @param _batcherHash Initial batcher hash. /// @param _gasLimit Initial gas limit. /// @param _unsafeBlockSigner Initial unsafe block signer address. /// @param _config Initial ResourceConfig. /// @param _batchInbox Batch inbox address. An identifier for the op-node to find /// canonical data. /// @param _addresses Set of L1 contract addresses. These should be the proxies. function initialize( address _owner, uint256 _overhead, uint256 _scalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config, address _batchInbox, SystemConfig.Addresses memory _addresses ) public initializer { __Ownable_init(); transferOwnership(_owner); // These are set in ascending order of their UpdateTypes. _setBatcherHash(_batcherHash); _setGasConfig({ _overhead: _overhead, _scalar: _scalar }); _setGasLimit(_gasLimit); Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox); Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger); Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge); Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge); Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle); Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal); Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory); _setStartBlock(); _setResourceConfig(_config); require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); } /// @notice Returns the minimum L2 gas limit that can be safely set for the system to /// operate. The L2 gas limit must be larger than or equal to the amount of /// gas that is allocated for deposits per block plus the amount of gas that /// is allocated for the system transaction. /// This function is used to determine if changes to parameters are safe. /// @return uint64 Minimum gas limit. function minimumGasLimit() public view returns (uint64) { return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas); } /// @notice High level getter for the unsafe block signer address. /// Unsafe blocks can be propagated across the p2p network if they are signed by the /// key corresponding to this address. /// @return addr_ Address of the unsafe block signer. // solhint-disable-next-line ordering function unsafeBlockSigner() public view returns (address addr_) { addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT); } /// @notice Getter for the L1CrossDomainMessenger address. function l1CrossDomainMessenger() external view returns (address addr_) { addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT); } /// @notice Getter for the L1ERC721Bridge address. function l1ERC721Bridge() external view returns (address addr_) { addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT); } /// @notice Getter for the L1StandardBridge address. function l1StandardBridge() external view returns (address addr_) { addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT); } /// @notice Getter for the L2OutputOracle address. function l2OutputOracle() external view returns (address addr_) { addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT); } /// @notice Getter for the OptimismPortal address. function optimismPortal() external view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT); } /// @notice Getter for the OptimismMintableERC20Factory address. function optimismMintableERC20Factory() external view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT); } /// @notice Getter for the BatchInbox address. function batchInbox() external view returns (address addr_) { addr_ = Storage.getAddress(BATCH_INBOX_SLOT); } /// @notice Getter for the StartBlock number. function startBlock() external view returns (uint256 startBlock_) { startBlock_ = Storage.getUint(START_BLOCK_SLOT); } /// @notice Updates the unsafe block signer address. Can only be called by the owner. /// @param _unsafeBlockSigner New unsafe block signer address. function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner { _setUnsafeBlockSigner(_unsafeBlockSigner); } /// @notice Updates the unsafe block signer address. /// @param _unsafeBlockSigner New unsafe block signer address. function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal { Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); bytes memory data = abi.encode(_unsafeBlockSigner); emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data); } /// @notice Updates the batcher hash. Can only be called by the owner. /// @param _batcherHash New batcher hash. function setBatcherHash(bytes32 _batcherHash) external onlyOwner { _setBatcherHash(_batcherHash); } /// @notice Internal function for updating the batcher hash. /// @param _batcherHash New batcher hash. function _setBatcherHash(bytes32 _batcherHash) internal { batcherHash = _batcherHash; bytes memory data = abi.encode(_batcherHash); emit ConfigUpdate(VERSION, UpdateType.BATCHER, data); } /// @notice Updates gas config. Can only be called by the owner. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner { _setGasConfig(_overhead, _scalar); } /// @notice Internal function for updating the gas config. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function _setGasConfig(uint256 _overhead, uint256 _scalar) internal { overhead = _overhead; scalar = _scalar; bytes memory data = abi.encode(_overhead, _scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /// @notice Updates the L2 gas limit. Can only be called by the owner. /// @param _gasLimit New gas limit. function setGasLimit(uint64 _gasLimit) external onlyOwner { _setGasLimit(_gasLimit); } /// @notice Internal function for updating the L2 gas limit. /// @param _gasLimit New gas limit. function _setGasLimit(uint64 _gasLimit) internal { require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); gasLimit = _gasLimit; bytes memory data = abi.encode(_gasLimit); emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data); } /// @notice Sets the start block in a backwards compatible way. Proxies /// that were initialized before the startBlock existed in storage /// can have their start block set by a user provided override. /// A start block of 0 indicates that there is no override and the /// start block will be set by `block.number`. /// @dev This logic is used to patch legacy deployments with new storage values. /// Use the override if it is provided as a non zero value and the value /// has not already been set in storage. Use `block.number` if the value /// has already been set in storage function _setStartBlock() internal { if (Storage.getUint(START_BLOCK_SLOT) == 0) { Storage.setUint(START_BLOCK_SLOT, block.number); } } /// @notice A getter for the resource config. /// Ensures that the struct is returned instead of a tuple. /// @return ResourceConfig function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) { return _resourceConfig; } /// @notice An external setter for the resource config. /// In the future, this method may emit an event that the `op-node` picks up /// for when the resource config is changed. /// @param _config The new resource config values. function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner { _setResourceConfig(_config); } /// @notice An internal setter for the resource config. /// Ensures that the config is sane before storing it by checking for invariants. /// @param _config The new resource config. function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal { // Min base fee must be less than or equal to max base fee. require( _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base" ); // Base fee change denominator must be greater than 1. require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1"); // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit. // The gas limit must be increased before these values can be increased. require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low"); // Elasticity multiplier must be greater than 0. require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0"); // No precision loss when computing target resource limit. require( ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier) == _config.maxResourceLimit, "SystemConfig: precision loss with target resource limit" ); _resourceConfig = _config; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; /// @title Constants /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just /// the stuff used in multiple contracts. Constants that only apply to a single contract /// should be defined in that contract instead. library Constants { /// @notice Special address to be used as the tx origin for gas estimation calls in the /// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if /// the minimum gas limit specified by the user is not actually enough to execute the /// given message and you're attempting to estimate the actual necessary gas limit. We /// use address(1) because it's the ecrecover precompile and therefore guaranteed to /// never have any code on any EVM chain. address internal constant ESTIMATION_ADDRESS = address(1); /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the /// CrossDomainMessenger contracts before an actual sender is set. This value is /// non-zero to reduce the gas cost of message passing transactions. address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /// @notice The storage slot that holds the address of a proxy implementation. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)` bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @notice The storage slot that holds the address of the owner. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)` bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /// @notice Returns the default values for the ResourceConfig. These are the recommended values /// for a production network. function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Types /// @notice Contains various types used throughout the Optimism contract system. library Types { /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 /// timestamp that the output root is posted. This timestamp is used to verify that the /// finalization period has passed since the output root was submitted. /// @custom:field outputRoot Hash of the L2 output. /// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. /// @custom:field l2BlockNumber L2 block number that the output corresponds to. struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /// @notice Struct representing the elements that are hashed together to generate an output root /// which itself represents a snapshot of the L2 state. /// @custom:field version Version of the output root. /// @custom:field stateRoot Root of the state trie at the block of this output. /// @custom:field messagePasserStorageRoot Root of the message passer storage trie. /// @custom:field latestBlockhash Hash of the block this output was generated from. struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end /// user (as opposed to a system deposit transaction generated by the system). /// @custom:field from Address of the sender of the transaction. /// @custom:field to Address of the recipient of the transaction. /// @custom:field isCreation True if the transaction is a contract creation. /// @custom:field value Value to send to the recipient. /// @custom:field mint Amount of ETH to mint. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. /// @custom:field l1BlockHash Hash of the block the transaction was submitted in. /// @custom:field logIndex Index of the log in the block the transaction was submitted in. struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /// @notice Struct representing a withdrawal transaction. /// @custom:field nonce Nonce of the withdrawal transaction /// @custom:field sender Address of the sender of the transaction. /// @custom:field target Address of the recipient of the transaction. /// @custom:field value Value to send to the recipient. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Encoding } from "src/libraries/Encoding.sol"; /// @title Hashing /// @notice Hashing handles Optimism's various different hashing schemes. library Hashing { /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a /// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 /// system. /// @param _tx User deposit transaction to hash. /// @return Hash of the RLP encoded L2 deposit transaction. function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash /// of the L2 transaction that corresponds to a deposit is unique and is /// deterministically generated from L1 transaction data. /// @param _l1BlockHash Hash of the L1 block where the deposit was included. /// @param _logIndex The index of the log that created the deposit transaction. /// @return Hash of the deposit transaction's "source hash". function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /// @notice Hashes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /// @notice Hashes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Hashed cross domain message. function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /// @notice Hashes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data)); } /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract /// @param _tx Withdrawal transaction to hash. /// @return Hashed withdrawal transaction. function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)); } /// @notice Hashes the various elements of an output root proof into an output root hash which /// can be used to check if the proof is valid. /// @param _outputRootProof Output root proof which should hash to an output root. /// @return Hashed output root proof. function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { MerkleTrie } from "./MerkleTrie.sol"; /// @title SecureMerkleTrie /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input /// keys. Ethereum's state trie hashes input keys before storing them. library SecureMerkleTrie { /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { bytes memory key = _getSecureKey(_key); valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { bytes memory key = _getSecureKey(_key); value_ = MerkleTrie.get(key, _proof, _root); } /// @notice Computes the hashed version of the input key. /// @param _key Key to hash. /// @return hash_ Hashed version of the key. function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) { hash_ = abi.encodePacked(keccak256(_key)); } }
// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "src/libraries/Burn.sol"; import { Arithmetic } from "src/libraries/Arithmetic.sol"; /// @custom:upgradeable /// @title ResourceMetering /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing /// updates automatically based on current demand. abstract contract ResourceMetering is Initializable { /// @notice Represents the various parameters that control the way in which resources are /// metered. Corresponds to the EIP-1559 resource metering system. /// @custom:field prevBaseFee Base fee from the previous block(s). /// @custom:field prevBoughtGas Amount of gas bought so far in the current block. /// @custom:field prevBlockNum Last block number that the base fee was updated. struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas /// market. These values should be set with care as it is possible to set them in /// a way that breaks the deposit gas market. The target resource limit is defined as /// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a /// single word. There is additional space for additions in the future. /// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that /// can be purchased per block. /// @custom:field elasticityMultiplier Determines the target resource limit along with /// the resource limit. /// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. /// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this /// value. /// @custom:field systemTxMaxGas The amount of gas supplied to the system /// transaction. This should be set to the same /// number that the op-node sets as the gas limit /// for the system transaction. /// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this /// value. struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /// @notice EIP-1559 style gas parameters. ResourceParams public params; /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. uint256[48] private __gap; /// @notice Meters access to a function based an amount of a requested resource. /// @param _amount Amount of the resource requested. modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /// @notice An internal function that holds all of the logic for metering a resource. /// @param _amount Amount of the resource requested. /// @param _initialGas The amount of gas before any modifier execution. function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /// @notice Virtual function that returns the resource config. /// Contracts that inherit this contract must implement this function. /// @return ResourceConfig function _resourceConfig() internal virtual returns (ResourceConfig memory); /// @notice Sets initial resource parameter values. /// This function must either be called by the initializer function of an upgradeable /// child contract. // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { if (params.prevBlockNum == 0) { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol"; /// @title Encoding /// @notice Encoding handles Optimism's various different encoding schemes. library Encoding { /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent /// to the L2 system. Useful for searching for a deposit in the L2 system. The /// transaction is prefixed with 0x7e to identify its EIP-2718 type. /// @param _tx User deposit transaction to encode. /// @return RLP encoded L2 deposit transaction. function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /// @notice Encodes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /// @notice Encodes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Encoded cross domain message. function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce); } /// @notice Encodes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /// @notice Adds a version number into the first two bytes of a message nonce. /// @param _nonce Message nonce to encode into. /// @param _version Version number to encode into the message nonce. /// @return Message nonce with version encoded into the first two bytes. function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /// @notice Pulls the version out of a version-encoded nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @return Nonce without encoded version. /// @return Version of the message. function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone /// @param baseFeeScalar L1 base fee Scalar /// @param blobBaseFeeScalar L1 blob base fee Scalar /// @param sequenceNumber Number of L2 blocks since epoch start. /// @param timestamp L1 timestamp. /// @param number L1 blocknumber. /// @param baseFee L1 base fee. /// @param blobBaseFee L1 blob base fee. /// @param hash L1 blockhash. /// @param batcherHash Versioned hash to authenticate batcher by. function encodeSetL1BlockValuesEcotone( uint32 baseFeeScalar, uint32 blobBaseFeeScalar, uint64 sequenceNumber, uint64 timestamp, uint64 number, uint256 baseFee, uint256 blobBaseFee, bytes32 hash, bytes32 batcherHash ) internal pure returns (bytes memory) { bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()")); return abi.encodePacked( functionSignature, baseFeeScalar, blobBaseFeeScalar, sequenceNumber, timestamp, number, baseFee, blobBaseFee, hash, batcherHash ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Storage /// @notice Storage handles reading and writing to arbitary storage locations library Storage { /// @notice Returns an address stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getAddress(bytes32 _slot) internal view returns (address addr_) { assembly { addr_ := sload(_slot) } } /// @notice Stores an address in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _address The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses /// in arbitrary storage slots. function setAddress(bytes32 _slot, address _address) internal { assembly { sstore(_slot, _address) } } /// @notice Returns a uint256 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getUint(bytes32 _slot) internal view returns (uint256 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setUint(bytes32 _slot, uint256 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bytes32 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The bytes32 value to store. /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBytes32(bytes32 _slot, bytes32 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Stores a bool value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the bool in. /// @param _value The bool value to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBool(bytes32 _slot, bool _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bool stored in an arbitrary storage slot. /// @param _slot The storage slot to retrieve the bool from. function getBool(bytes32 _slot) internal view returns (bool value_) { assembly { value_ := sload(_slot) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Bytes } from "../Bytes.sol"; import { RLPReader } from "../rlp/RLPReader.sol"; /// @title MerkleTrie /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie /// inclusion proofs. By default, this library assumes a hexary trie. One can change the /// trie radix constant to support other trie radixes. library MerkleTrie { /// @notice Struct representing a node in the trie. /// @custom:field encoded The RLP-encoded node. /// @custom:field decoded The RLP-decoded node. struct TrieNode { bytes encoded; RLPReader.RLPItem[] decoded; } /// @notice Determines the number of elements per branch node. uint256 internal constant TREE_RADIX = 16; /// @notice Branch nodes have TREE_RADIX elements and one value element. uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1; /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`. uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2; /// @notice Prefix for even-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_EVEN = 0; /// @notice Prefix for odd-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_ODD = 1; /// @notice Prefix for even-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_EVEN = 2; /// @notice Prefix for odd-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_ODD = 3; /// @notice Verifies a proof that a given key/value pair is present in the trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { valid_ = Bytes.equal(_value, get(_key, _proof, _root)); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { require(_key.length > 0, "MerkleTrie: empty key"); TrieNode[] memory proof = _parseProof(_proof); bytes memory key = Bytes.toNibbles(_key); bytes memory currentNodeID = abi.encodePacked(_root); uint256 currentKeyIndex = 0; // Proof is top-down, so we start at the first element (root). for (uint256 i = 0; i < proof.length; i++) { TrieNode memory currentNode = proof[i]; // Key index should never exceed total key length or we'll be out of bounds. require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length"); if (currentKeyIndex == 0) { // First proof element is always the root node. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid root hash" ); } else if (currentNode.encoded.length >= 32) { // Nodes 32 bytes or larger are hashed inside branch nodes. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid large internal hash" ); } else { // Nodes smaller than 32 bytes aren't hashed. require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash"); } if (currentNode.decoded.length == BRANCH_NODE_LENGTH) { if (currentKeyIndex == key.length) { // Value is the last element of the decoded list (for branch nodes). There's // some ambiguity in the Merkle trie specification because bytes(0) is a // valid value to place into the trie, but for branch nodes bytes(0) can exist // even when the value wasn't explicitly placed there. Geth treats a value of // bytes(0) as "key does not exist" and so we do the same. value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)"); return value_; } else { // We're not at the end of the key yet. // Figure out what the next node ID should be and continue. uint8 branchKey = uint8(key[currentKeyIndex]); RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey]; currentNodeID = _getNodeID(nextNode); currentKeyIndex += 1; } } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) { bytes memory path = _getNodePath(currentNode); uint8 prefix = uint8(path[0]); uint8 offset = 2 - (prefix % 2); bytes memory pathRemainder = Bytes.slice(path, offset); bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex); uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder); // Whether this is a leaf node or an extension node, the path remainder MUST be a // prefix of the key remainder (or be equal to the key remainder) or the proof is // considered invalid. require( pathRemainder.length == sharedNibbleLength, "MerkleTrie: path remainder must share all nibbles with key" ); if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) { // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid, // the key remainder must be exactly equal to the path remainder. We already // did the necessary byte comparison, so it's more efficient here to check that // the key remainder length equals the shared nibble length, which implies // equality with the path remainder (since we already did the same check with // the path remainder and the shared nibble length). require( keyRemainder.length == sharedNibbleLength, "MerkleTrie: key remainder must be identical to path remainder" ); // Our Merkle Trie is designed specifically for the purposes of the Ethereum // state trie. Empty values are not allowed in the state trie, so we can safely // say that if the value is empty, the key should not exist and the proof is // invalid. value_ = RLPReader.readBytes(currentNode.decoded[1]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)"); return value_; } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) { // Prefix of 0 or 1 means this is an extension node. We move onto the next node // in the proof and increment the key index by the length of the path remainder // which is equal to the shared nibble length. currentNodeID = _getNodeID(currentNode.decoded[1]); currentKeyIndex += sharedNibbleLength; } else { revert("MerkleTrie: received a node with an unknown prefix"); } } else { revert("MerkleTrie: received an unparseable node"); } } revert("MerkleTrie: ran out of proof elements"); } /// @notice Parses an array of proof elements into a new array that contains both the original /// encoded element and the RLP-decoded element. /// @param _proof Array of proof elements to parse. /// @return proof_ Proof parsed into easily accessible structs. function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) { uint256 length = _proof.length; proof_ = new TrieNode[](length); for (uint256 i = 0; i < length;) { proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) }); unchecked { ++i; } } } /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the /// specification, but nodes < 32 bytes are not actually hashed. /// @param _node Node to pull an ID for. /// @return id_ ID for the node, depending on the size of its contents. function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) { id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node); } /// @notice Gets the path for a leaf or extension node. /// @param _node Node to get a path for. /// @return nibbles_ Node path, converted to an array of nibbles. function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) { nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0])); } /// @notice Utility; determines the number of nibbles shared between two nibble arrays. /// @param _a First nibble array. /// @param _b Second nibble array. /// @return shared_ Number of shared nibbles. function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) { uint256 max = (_a.length < _b.length) ? _a.length : _b.length; for (; shared_ < max && _a[shared_] == _b[shared_];) { unchecked { ++shared_; } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title Burn /// @notice Utilities for burning stuff. library Burn { /// @notice Burns a given amount of ETH. /// @param _amount Amount of ETH to burn. function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /// @notice Burns a given amount of gas. /// @param _amount Amount of gas to burn. function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /// @title Burner /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to /// the contract from the circulating supply. Self-destructing is the only way to remove ETH /// from the circulating supply. contract Burner { constructor() payable { selfdestruct(payable(address(this))); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /// @title Arithmetic /// @notice Even more math than before. library Arithmetic { /// @notice Clamps a value between a minimum and maximum. /// @param _value The value to clamp. /// @param _min The minimum value. /// @param _max The maximum value. /// @return The clamped value. function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /// @notice (c)oefficient (d)enominator (exp)onentiation function. /// Returns the result of: c * (1 - 1/d)^exp. /// @param _coefficient Coefficient of the function. /// @param _denominator Fractional denominator. /// @param _exponent Power function exponent. /// @return Result of c * (1 - 1/d)^exp. function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode /// @title RLPWriter /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's /// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor /// modifications to improve legibility. library RLPWriter { /// @notice RLP encodes a byte string. /// @param _in The byte string to encode. /// @return out_ The RLP encoded string in bytes. function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) { if (_in.length == 1 && uint8(_in[0]) < 128) { out_ = _in; } else { out_ = abi.encodePacked(_writeLength(_in.length, 128), _in); } } /// @notice RLP encodes a list of RLP encoded byte byte strings. /// @param _in The list of RLP encoded byte strings. /// @return list_ The RLP encoded list of items in bytes. function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) { list_ = _flatten(_in); list_ = abi.encodePacked(_writeLength(list_.length, 192), list_); } /// @notice RLP encodes a string. /// @param _in The string to encode. /// @return out_ The RLP encoded string in bytes. function writeString(string memory _in) internal pure returns (bytes memory out_) { out_ = writeBytes(bytes(_in)); } /// @notice RLP encodes an address. /// @param _in The address to encode. /// @return out_ The RLP encoded address in bytes. function writeAddress(address _in) internal pure returns (bytes memory out_) { out_ = writeBytes(abi.encodePacked(_in)); } /// @notice RLP encodes a uint. /// @param _in The uint256 to encode. /// @return out_ The RLP encoded uint256 in bytes. function writeUint(uint256 _in) internal pure returns (bytes memory out_) { out_ = writeBytes(_toBinary(_in)); } /// @notice RLP encodes a bool. /// @param _in The bool to encode. /// @return out_ The RLP encoded bool in bytes. function writeBool(bool _in) internal pure returns (bytes memory out_) { out_ = new bytes(1); out_[0] = (_in ? bytes1(0x01) : bytes1(0x80)); } /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. /// @param _len The length of the string or the payload. /// @param _offset 128 if item is string, 192 if item is list. /// @return out_ RLP encoded bytes. function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) { if (_len < 56) { out_ = new bytes(1); out_[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } out_ = new bytes(lenLen + 1); out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256)); } } } /// @notice Encode integer in big endian binary form with no leading zeroes. /// @param _x The integer to encode. /// @return out_ RLP encoded bytes. function _toBinary(uint256 _x) private pure returns (bytes memory out_) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } out_ = new bytes(32 - i); for (uint256 j = 0; j < out_.length; j++) { out_[j] = b[i++]; } } /// @custom:attribution https://github.com/Arachnid/solidity-stringutils /// @notice Copies a piece of memory to another location. /// @param _dest Destination location. /// @param _src Source location. /// @param _len Length of memory to copy. function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256 ** (32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder /// @notice Flattens a list of byte strings into one byte string. /// @param _list List of byte strings to flatten. /// @return out_ The flattened byte string. function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } out_ = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(out_, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Bytes /// @notice Bytes is a library for manipulating byte arrays. library Bytes { /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils /// @notice Slices a byte array with a given starting index and length. Returns a new byte array /// as opposed to a pointer to the original array. Will throw if trying to slice more /// bytes than exist in the array. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @param _length Length of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) { unchecked { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } /// @notice Slices a byte array with a given starting index up to the end of the original byte /// array. Returns a new array rathern than a pointer to the original. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) { if (_start >= _bytes.length) { return bytes(""); } return slice(_bytes, _start, _bytes.length - _start); } /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles. /// Resulting nibble array will be exactly twice as long as the input byte array. /// @param _bytes Input byte array to convert. /// @return Resulting nibble array. function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory _nibbles; assembly { // Grab a free memory offset for the new array _nibbles := mload(0x40) // Load the length of the passed bytes array from memory let bytesLength := mload(_bytes) // Calculate the length of the new nibble array // This is the length of the input array times 2 let nibblesLength := shl(0x01, bytesLength) // Update the free memory pointer to allocate memory for the new array. // To do this, we add the length of the new array + 32 bytes for the array length // rounded up to the nearest 32 byte boundary to the current free memory pointer. mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F)))) // Store the length of the new array in memory mstore(_nibbles, nibblesLength) // Store the memory offset of the _bytes array's contents on the stack let bytesStart := add(_bytes, 0x20) // Store the memory offset of the nibbles array's contents on the stack let nibblesStart := add(_nibbles, 0x20) // Loop through each byte in the input array for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } { // Get the starting offset of the next 2 bytes in the nibbles array let offset := add(nibblesStart, shl(0x01, i)) // Load the byte at the current index within the `_bytes` array let b := byte(0x00, mload(add(bytesStart, i))) // Pull out the first nibble and store it in the new array mstore8(offset, shr(0x04, b)) // Pull out the second nibble and store it in the new array mstore8(add(offset, 0x01), and(b, 0x0F)) } } return _nibbles; } /// @notice Compares two byte arrays by comparing their keccak256 hashes. /// @param _bytes First byte array to compare. /// @param _other Second byte array to compare. /// @return True if the two byte arrays are equal, false otherwise. function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.8; /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP /// @title RLPReader /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted /// from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with /// various tweaks to improve readability. library RLPReader { /// @notice Custom pointer type to avoid confusion between pointers and uint256s. type MemoryPointer is uint256; /// @notice RLP item types. /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list). /// @custom:value LIST_ITEM Represents an RLP list item. enum RLPItemType { DATA_ITEM, LIST_ITEM } /// @notice Struct representing an RLP item. /// @custom:field length Length of the RLP item. /// @custom:field ptr Pointer to the RLP item in memory. struct RLPItem { uint256 length; MemoryPointer ptr; } /// @notice Max list length that this library will accept. uint256 internal constant MAX_LIST_LENGTH = 32; /// @notice Converts bytes to a reference to memory position and length. /// @param _in Input bytes to convert. /// @return out_ Output memory reference. function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) { // Empty arrays are not RLP items. require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable"); MemoryPointer ptr; assembly { ptr := add(_in, 32) } out_ = RLPItem({ length: _in.length, ptr: ptr }); } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) { (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item"); require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder"); // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by // writing to the length. Since we can't know the number of RLP items without looping over // the entire input, we'd have to loop twice to accurately size this array. It's easier to // simply set a reasonable maximum list length and decrease the size before we finish. out_ = new RLPItem[](MAX_LIST_LENGTH); uint256 itemCount = 0; uint256 offset = listOffset; while (offset < _in.length) { (uint256 itemOffset, uint256 itemLength,) = _decodeLength( RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }) ); // We don't need to check itemCount < out.length explicitly because Solidity already // handles this check on our behalf, we'd just be wasting gas. out_[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }); itemCount += 1; offset += itemOffset + itemLength; } // Decrease the array size to match the actual item count. assembly { mstore(out_, itemCount) } } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) { out_ = readList(toRLPItem(_in)); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item"); require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder"); out_ = _copy(_in.ptr, itemOffset, itemLength); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(bytes memory _in) internal pure returns (bytes memory out_) { out_ = readBytes(toRLPItem(_in)); } /// @notice Reads the raw bytes of an RLP item. /// @param _in RLP item to read. /// @return out_ Raw RLP bytes. function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { out_ = _copy(_in.ptr, 0, _in.length); } /// @notice Decodes the length of an RLP item. /// @param _in RLP item to decode. /// @return offset_ Offset of the encoded data. /// @return length_ Length of the encoded data. /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM). function _decodeLength(RLPItem memory _in) private pure returns (uint256 offset_, uint256 length_, RLPItemType type_) { // Short-circuit if there's nothing to decode, note that we perform this check when // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass // that function and create an RLP item directly. So we need to check this anyway. require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable"); MemoryPointer ptr = _in.ptr; uint256 prefix; assembly { prefix := byte(0, mload(ptr)) } if (prefix <= 0x7f) { // Single byte. return (0, 1, RLPItemType.DATA_ITEM); } else if (prefix <= 0xb7) { // Short string. // slither-disable-next-line variable-scope uint256 strLen = prefix - 0x80; require( _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)" ); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } require( strLen != 1 || firstByteOfContent >= 0x80, "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)" ); return (1, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xbf) { // Long string. uint256 lenOfStrLen = prefix - 0xb7; require( _in.length > lenOfStrLen, "RLPReader: length of content must be > than length of string length (long string)" ); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } require( firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)" ); uint256 strLen; assembly { strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1))) } require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)"); require( _in.length > lenOfStrLen + strLen, "RLPReader: length of content must be greater than total length (long string)" ); return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xf7) { // Short list. // slither-disable-next-line variable-scope uint256 listLen = prefix - 0xc0; require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)"); return (1, listLen, RLPItemType.LIST_ITEM); } else { // Long list. uint256 lenOfListLen = prefix - 0xf7; require( _in.length > lenOfListLen, "RLPReader: length of content must be > than length of list length (long list)" ); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } require( firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)" ); uint256 listLen; assembly { listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1))) } require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)"); require( _in.length > lenOfListLen + listLen, "RLPReader: length of content must be greater than total length (long list)" ); return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM); } } /// @notice Copies the bytes from a memory location. /// @param _src Pointer to the location to read from. /// @param _offset Offset to start reading from. /// @param _length Number of bytes to read. /// @return out_ Copied bytes. function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) { out_ = new bytes(_length); if (_length == 0) { return out_; } // Mostly based on Solidity's copy_memory_to_memory: // solhint-disable max-line-length // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114 uint256 src = MemoryPointer.unwrap(_src) + _offset; assembly { let dest := add(out_, 32) let i := 0 for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) } if gt(i, _length) { mstore(add(dest, _length), 0) } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
{ "remappings": [ "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@rari-capital/solmate/=lib/solmate/", "@cwia/=lib/clones-with-immutable-args/src/", "@lib-keccak/=lib/lib-keccak/contracts/lib/", "forge-std/=lib/forge-std/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "safe-contracts/=lib/safe-contracts/contracts/", "kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/", "solady/=lib/solady/src/", "clones-with-immutable-args/=lib/clones-with-immutable-args/src/", "lib-keccak/=lib/lib-keccak/contracts/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "solmate/=lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 999999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"msgHash","type":"bytes32"}],"name":"FailedRelayedMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"msgHash","type":"bytes32"}],"name":"RelayedMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"bytes","name":"message","type":"bytes"},{"indexed":false,"internalType":"uint256","name":"messageNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"gasLimit","type":"uint256"}],"name":"SentMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"SentMessageExtension1","type":"event"},{"inputs":[],"name":"MESSAGE_VERSION","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_GAS_CALLDATA_OVERHEAD","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OTHER_MESSENGER","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PORTAL","outputs":[{"internalType":"contract OptimismPortal","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_CALL_OVERHEAD","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_CONSTANT_OVERHEAD","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_GAS_CHECK_BUFFER","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_RESERVED_GAS","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_message","type":"bytes"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"}],"name":"baseGas","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"failedMessages","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract SuperchainConfig","name":"_superchainConfig","type":"address"},{"internalType":"contract OptimismPortal","name":"_portal","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"messageNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"otherMessenger","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"portal","outputs":[{"internalType":"contract OptimismPortal","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nonce","type":"uint256"},{"internalType":"address","name":"_sender","type":"address"},{"internalType":"address","name":"_target","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"uint256","name":"_minGasLimit","type":"uint256"},{"internalType":"bytes","name":"_message","type":"bytes"}],"name":"relayMessage","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"bytes","name":"_message","type":"bytes"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"}],"name":"sendMessage","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"successfulMessages","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"superchainConfig","outputs":[{"internalType":"contract SuperchainConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xDomainMessageSender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x6080604052600436106101805760003560e01c80635c975abb116100d6578063a4e7f8bd1161007f578063d764ad0b11610059578063d764ad0b14610463578063db505d8014610476578063ecc70428146104a357600080fd5b8063a4e7f8bd146103e3578063b1b1b20914610413578063b28ade251461044357600080fd5b806383a74074116100b057806383a74074146103a15780638cbeeef2146102b85780639fce812c146103b857600080fd5b80635c975abb1461033a5780636425666b1461035f5780636e296e451461038c57600080fd5b80633dbb202b116101385780634c1d6a69116101125780634c1d6a69146102b857806354fd4d50146102ce5780635644cfdf1461032457600080fd5b80633dbb202b1461025b5780633f827a5a14610270578063485cc9551461029857600080fd5b80630ff754ea116101695780630ff754ea146101cd5780632828d7e81461021957806335e80ab31461022e57600080fd5b8063028f85f7146101855780630c568498146101b8575b600080fd5b34801561019157600080fd5b5061019a601081565b60405167ffffffffffffffff90911681526020015b60405180910390f35b3480156101c457600080fd5b5061019a603f81565b3480156101d957600080fd5b5060fc5473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016101af565b34801561022557600080fd5b5061019a604081565b34801561023a57600080fd5b5060fb546101f49073ffffffffffffffffffffffffffffffffffffffff1681565b61026e610269366004611a22565b610508565b005b34801561027c57600080fd5b50610285600181565b60405161ffff90911681526020016101af565b3480156102a457600080fd5b5061026e6102b3366004611a89565b610765565b3480156102c457600080fd5b5061019a619c4081565b3480156102da57600080fd5b506103176040518060400160405280600581526020017f322e332e3000000000000000000000000000000000000000000000000000000081525081565b6040516101af9190611b2d565b34801561033057600080fd5b5061019a61138881565b34801561034657600080fd5b5061034f6109d3565b60405190151581526020016101af565b34801561036b57600080fd5b5060fc546101f49073ffffffffffffffffffffffffffffffffffffffff1681565b34801561039857600080fd5b506101f4610a6c565b3480156103ad57600080fd5b5061019a62030d4081565b3480156103c457600080fd5b5060cf5473ffffffffffffffffffffffffffffffffffffffff166101f4565b3480156103ef57600080fd5b5061034f6103fe366004611b47565b60ce6020526000908152604090205460ff1681565b34801561041f57600080fd5b5061034f61042e366004611b47565b60cb6020526000908152604090205460ff1681565b34801561044f57600080fd5b5061019a61045e366004611b60565b610b53565b61026e610471366004611bb4565b610bc1565b34801561048257600080fd5b5060cf546101f49073ffffffffffffffffffffffffffffffffffffffff1681565b3480156104af57600080fd5b506104fa60cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b6040519081526020016101af565b60cf5461063a9073ffffffffffffffffffffffffffffffffffffffff16610530858585610b53565b347fd764ad0b0000000000000000000000000000000000000000000000000000000061059c60cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b338a34898c8c6040516024016105b89796959493929190611c83565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091526114f2565b8373ffffffffffffffffffffffffffffffffffffffff167fcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a3385856106bf60cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b866040516106d1959493929190611ce2565b60405180910390a260405134815233907f8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d5469060200160405180910390a2505060cd80547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808216600101167fffff0000000000000000000000000000000000000000000000000000000000009091161790555050565b6000547501000000000000000000000000000000000000000000900460ff16158080156107b0575060005460017401000000000000000000000000000000000000000090910460ff16105b806107e25750303b1580156107e2575060005474010000000000000000000000000000000000000000900460ff166001145b610873576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084015b60405180910390fd5b600080547fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff167401000000000000000000000000000000000000000017905580156108f957600080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff1675010000000000000000000000000000000000000000001790555b60fb805473ffffffffffffffffffffffffffffffffffffffff8086167fffffffffffffffffffffffff00000000000000000000000000000000000000009283161790925560fc80549285169290911691909117905561096b73420000000000000000000000000000000000000761158b565b80156109ce57600080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b60fb54604080517f5c975abb000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff1691635c975abb9160048083019260209291908290030181865afa158015610a43573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a679190611d30565b905090565b60cc5460009073ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff215301610b36576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603560248201527f43726f7373446f6d61696e4d657373656e6765723a2078446f6d61696e4d657360448201527f7361676553656e646572206973206e6f74207365740000000000000000000000606482015260840161086a565b5060cc5473ffffffffffffffffffffffffffffffffffffffff1690565b6000611388619c4080603f610b6f604063ffffffff8816611d81565b610b799190611db1565b610b84601088611d81565b610b919062030d40611dff565b610b9b9190611dff565b610ba59190611dff565b610baf9190611dff565b610bb99190611dff565b949350505050565b610bc96109d3565b15610c30576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f43726f7373446f6d61696e4d657373656e6765723a2070617573656400000000604482015260640161086a565b60f087901c60028110610ceb576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604d60248201527f43726f7373446f6d61696e4d657373656e6765723a206f6e6c7920766572736960448201527f6f6e2030206f722031206d657373616765732061726520737570706f7274656460648201527f20617420746869732074696d6500000000000000000000000000000000000000608482015260a40161086a565b8061ffff16600003610de0576000610d3c878986868080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152508f92506116c7915050565b600081815260cb602052604090205490915060ff1615610dde576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f43726f7373446f6d61696e4d657373656e6765723a206c65676163792077697460448201527f6864726177616c20616c72656164792072656c61796564000000000000000000606482015260840161086a565b505b6000610e26898989898989898080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506116e692505050565b9050610e30611709565b15610e6857853414610e4457610e44611e2b565b600081815260ce602052604090205460ff1615610e6357610e63611e2b565b610fba565b3415610f1c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152605060248201527f43726f7373446f6d61696e4d657373656e6765723a2076616c7565206d75737460448201527f206265207a65726f20756e6c657373206d6573736167652069732066726f6d2060648201527f612073797374656d206164647265737300000000000000000000000000000000608482015260a40161086a565b600081815260ce602052604090205460ff16610fba576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f43726f7373446f6d61696e4d657373656e6765723a206d65737361676520636160448201527f6e6e6f74206265207265706c6179656400000000000000000000000000000000606482015260840161086a565b610fc3876117e5565b15611076576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604360248201527f43726f7373446f6d61696e4d657373656e6765723a2063616e6e6f742073656e60448201527f64206d65737361676520746f20626c6f636b65642073797374656d206164647260648201527f6573730000000000000000000000000000000000000000000000000000000000608482015260a40161086a565b600081815260cb602052604090205460ff1615611115576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f43726f7373446f6d61696e4d657373656e6765723a206d65737361676520686160448201527f7320616c7265616479206265656e2072656c6179656400000000000000000000606482015260840161086a565b61113685611127611388619c40611dff565b67ffffffffffffffff1661182b565b158061115c575060cc5473ffffffffffffffffffffffffffffffffffffffff1661dead14155b1561127557600081815260ce602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555182917f99d0e048484baa1b1540b1367cb128acd7ab2946d1ed91ec10e3c85e4bf51b8f91a27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff320161126e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f43726f7373446f6d61696e4d657373656e6765723a206661696c656420746f2060448201527f72656c6179206d65737361676500000000000000000000000000000000000000606482015260840161086a565b50506114cd565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff8a16179055600061130688619c405a6112c99190611e5a565b8988888080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061184992505050565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead179055905080156113bc57600082815260cb602052604090205460ff161561135957611359611e2b565b600082815260cb602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555183917f4641df4a962071e12719d8c8c8e5ac7fc4d97b927346a3d7a335b1f7517e133c91a26114c9565b600082815260ce602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555183917f99d0e048484baa1b1540b1367cb128acd7ab2946d1ed91ec10e3c85e4bf51b8f91a27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff32016114c9576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f43726f7373446f6d61696e4d657373656e6765723a206661696c656420746f2060448201527f72656c6179206d65737361676500000000000000000000000000000000000000606482015260840161086a565b5050505b50505050505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b60fc546040517fe9e05c4200000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff9091169063e9e05c42908490611553908890839089906000908990600401611e71565b6000604051808303818588803b15801561156c57600080fd5b505af1158015611580573d6000803e3d6000fd5b505050505050505050565b6000547501000000000000000000000000000000000000000000900460ff16611636576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e67000000000000000000000000000000000000000000606482015260840161086a565b60cc5473ffffffffffffffffffffffffffffffffffffffff166116805760cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead1790555b60cf80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b60006116d585858585611863565b805190602001209050949350505050565b60006116f68787878787876118fc565b8051906020012090509695505050505050565b60fc5460009073ffffffffffffffffffffffffffffffffffffffff1633148015610a67575060cf5460fc54604080517f9bf62d82000000000000000000000000000000000000000000000000000000008152905173ffffffffffffffffffffffffffffffffffffffff9384169390921691639bf62d82916004808201926020929091908290030181865afa1580156117a5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906117c99190611ec9565b73ffffffffffffffffffffffffffffffffffffffff1614905090565b600073ffffffffffffffffffffffffffffffffffffffff8216301480611825575060fc5473ffffffffffffffffffffffffffffffffffffffff8381169116145b92915050565b600080603f83619c4001026040850201603f5a021015949350505050565b600080600080845160208601878a8af19695505050505050565b60608484848460405160240161187c9493929190611ee6565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fcbd4ece9000000000000000000000000000000000000000000000000000000001790529050949350505050565b606086868686868660405160240161191996959493929190611f30565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fd764ad0b0000000000000000000000000000000000000000000000000000000017905290509695505050505050565b73ffffffffffffffffffffffffffffffffffffffff811681146119bd57600080fd5b50565b60008083601f8401126119d257600080fd5b50813567ffffffffffffffff8111156119ea57600080fd5b602083019150836020828501011115611a0257600080fd5b9250929050565b803563ffffffff81168114611a1d57600080fd5b919050565b60008060008060608587031215611a3857600080fd5b8435611a438161199b565b9350602085013567ffffffffffffffff811115611a5f57600080fd5b611a6b878288016119c0565b9094509250611a7e905060408601611a09565b905092959194509250565b60008060408385031215611a9c57600080fd5b8235611aa78161199b565b91506020830135611ab78161199b565b809150509250929050565b6000815180845260005b81811015611ae857602081850181015186830182015201611acc565b81811115611afa576000602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000611b406020830184611ac2565b9392505050565b600060208284031215611b5957600080fd5b5035919050565b600080600060408486031215611b7557600080fd5b833567ffffffffffffffff811115611b8c57600080fd5b611b98868287016119c0565b9094509250611bab905060208501611a09565b90509250925092565b600080600080600080600060c0888a031215611bcf57600080fd5b873596506020880135611be18161199b565b95506040880135611bf18161199b565b9450606088013593506080880135925060a088013567ffffffffffffffff811115611c1b57600080fd5b611c278a828b016119c0565b989b979a50959850939692959293505050565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b878152600073ffffffffffffffffffffffffffffffffffffffff808916602084015280881660408401525085606083015263ffffffff8516608083015260c060a0830152611cd560c083018486611c3a565b9998505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff86168152608060208201526000611d12608083018688611c3a565b905083604083015263ffffffff831660608301529695505050505050565b600060208284031215611d4257600080fd5b81518015158114611b4057600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600067ffffffffffffffff80831681851681830481118215151615611da857611da8611d52565b02949350505050565b600067ffffffffffffffff80841680611df3577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b92169190910492915050565b600067ffffffffffffffff808316818516808303821115611e2257611e22611d52565b01949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052600160045260246000fd5b600082821015611e6c57611e6c611d52565b500390565b73ffffffffffffffffffffffffffffffffffffffff8616815284602082015267ffffffffffffffff84166040820152821515606082015260a060808201526000611ebe60a0830184611ac2565b979650505050505050565b600060208284031215611edb57600080fd5b8151611b408161199b565b600073ffffffffffffffffffffffffffffffffffffffff808716835280861660208401525060806040830152611f1f6080830185611ac2565b905082606083015295945050505050565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a0830152611f7b60c0830184611ac2565b9897505050505050505056fea164736f6c634300080f000a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.