ETH Price: $2,256.94 (-1.02%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Method Block
From
To
0x60806040222749182025-04-15 14:16:11294 days ago1744726571  Contract Creation0 ETH
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
L1ERC721Bridge

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { ERC721Bridge } from "src/universal/ERC721Bridge.sol";
import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import { L2ERC721Bridge } from "src/L2/L2ERC721Bridge.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { StandardBridge } from "src/universal/StandardBridge.sol";
import { Constants } from "src/libraries/Constants.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";

/// @title L1ERC721Bridge
/// @notice The L1 ERC721 bridge is a contract which works together with the L2 ERC721 bridge to
///         make it possible to transfer ERC721 tokens from Ethereum to Optimism. This contract
///         acts as an escrow for ERC721 tokens deposited into L2.
contract L1ERC721Bridge is ERC721Bridge, ISemver {
    /// @notice Mapping of L1 token to L2 token to ID to boolean, indicating if the given L1 token
    ///         by ID was deposited for a given L2 token.
    mapping(address => mapping(address => mapping(uint256 => bool))) public deposits;

    /// @notice Address of the SuperchainConfig contract.
    SuperchainConfig public superchainConfig;

    /// @notice Semantic version.
    /// @custom:semver 2.2.0
    string public constant version = "2.2.0";

    /// @notice Constructs the L1ERC721Bridge contract.
    constructor() ERC721Bridge() {
        initialize({ _messenger: CrossDomainMessenger(address(0)), _superchainConfig: SuperchainConfig(address(0)) });
    }

    /// @notice Initializes the contract.
    /// @param _messenger   Contract of the CrossDomainMessenger on this network.
    /// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
    function initialize(CrossDomainMessenger _messenger, SuperchainConfig _superchainConfig) public initializer {
        superchainConfig = _superchainConfig;
        __ERC721Bridge_init({
            _messenger: _messenger,
            _otherBridge: StandardBridge(payable(Predeploys.L2_ERC721_BRIDGE))
        });
    }

    /// @inheritdoc ERC721Bridge
    function paused() public view override returns (bool) {
        return superchainConfig.paused();
    }

    /// @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
    ///         recipient on this domain.
    /// @param _localToken  Address of the ERC721 token on this domain.
    /// @param _remoteToken Address of the ERC721 token on the other domain.
    /// @param _from        Address that triggered the bridge on the other domain.
    /// @param _to          Address to receive the token on this domain.
    /// @param _tokenId     ID of the token being deposited.
    /// @param _extraData   Optional data to forward to L2.
    ///                     Data supplied here will not be used to execute any code on L2 and is
    ///                     only emitted as extra data for the convenience of off-chain tooling.
    function finalizeBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        bytes calldata _extraData
    )
        external
        onlyOtherBridge
    {
        require(paused() == false, "L1ERC721Bridge: paused");
        require(_localToken != address(this), "L1ERC721Bridge: local token cannot be self");

        // Checks that the L1/L2 NFT pair has a token ID that is escrowed in the L1 Bridge.
        require(
            deposits[_localToken][_remoteToken][_tokenId] == true,
            "L1ERC721Bridge: Token ID is not escrowed in the L1 Bridge"
        );

        // Mark that the token ID for this L1/L2 token pair is no longer escrowed in the L1
        // Bridge.
        deposits[_localToken][_remoteToken][_tokenId] = false;

        // When a withdrawal is finalized on L1, the L1 Bridge transfers the NFT to the
        // withdrawer.
        IERC721(_localToken).safeTransferFrom({ from: address(this), to: _to, tokenId: _tokenId });

        // slither-disable-next-line reentrancy-events
        emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
    }

    /// @inheritdoc ERC721Bridge
    function _initiateBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    )
        internal
        override
    {
        require(_remoteToken != address(0), "L1ERC721Bridge: remote token cannot be address(0)");

        // Construct calldata for _l2Token.finalizeBridgeERC721(_to, _tokenId)
        bytes memory message = abi.encodeWithSelector(
            L2ERC721Bridge.finalizeBridgeERC721.selector, _remoteToken, _localToken, _from, _to, _tokenId, _extraData
        );

        // Lock token into bridge
        deposits[_localToken][_remoteToken][_tokenId] = true;
        IERC721(_localToken).transferFrom({ from: _from, to: address(this), tokenId: _tokenId });

        // Send calldata into L2
        messenger.sendMessage({ _target: address(otherBridge), _message: message, _minGasLimit: _minGasLimit });
        emit ERC721BridgeInitiated(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { StandardBridge } from "src/universal/StandardBridge.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
import { EOA } from "src/libraries/EOA.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";

/// @title ERC721Bridge
/// @notice ERC721Bridge is a base contract for the L1 and L2 ERC721 bridges.
abstract contract ERC721Bridge is Initializable {
    /// @notice Messenger contract on this domain.
    /// @custom:network-specific
    CrossDomainMessenger public messenger;

    /// @notice Contract of the bridge on the other network.
    /// @custom:network-specific
    StandardBridge public otherBridge;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    uint256[46] private __gap;

    /// @notice Emitted when an ERC721 bridge to the other network is initiated.
    /// @param localToken  Address of the token on this domain.
    /// @param remoteToken Address of the token on the remote domain.
    /// @param from        Address that initiated bridging action.
    /// @param to          Address to receive the token.
    /// @param tokenId     ID of the specific token deposited.
    /// @param extraData   Extra data for use on the client-side.
    event ERC721BridgeInitiated(
        address indexed localToken,
        address indexed remoteToken,
        address indexed from,
        address to,
        uint256 tokenId,
        bytes extraData
    );

    /// @notice Emitted when an ERC721 bridge from the other network is finalized.
    /// @param localToken  Address of the token on this domain.
    /// @param remoteToken Address of the token on the remote domain.
    /// @param from        Address that initiated bridging action.
    /// @param to          Address to receive the token.
    /// @param tokenId     ID of the specific token deposited.
    /// @param extraData   Extra data for use on the client-side.
    event ERC721BridgeFinalized(
        address indexed localToken,
        address indexed remoteToken,
        address indexed from,
        address to,
        uint256 tokenId,
        bytes extraData
    );

    /// @notice Ensures that the caller is a cross-chain message from the other bridge.
    modifier onlyOtherBridge() {
        require(
            msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
            "ERC721Bridge: function can only be called from the other bridge"
        );
        _;
    }

    /// @notice Initializer.
    /// @param _messenger   Contract of the CrossDomainMessenger on this network.
    /// @param _otherBridge Contract of the ERC721 bridge on the other network.
    function __ERC721Bridge_init(
        CrossDomainMessenger _messenger,
        StandardBridge _otherBridge
    )
        internal
        onlyInitializing
    {
        messenger = _messenger;
        otherBridge = _otherBridge;
    }

    /// @notice Legacy getter for messenger contract.
    ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
    /// @return Messenger contract on this domain.
    /// @custom:legacy
    function MESSENGER() external view returns (CrossDomainMessenger) {
        return messenger;
    }

    /// @notice Legacy getter for other bridge address.
    ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
    /// @return Contract of the bridge on the other network.
    /// @custom:legacy
    function OTHER_BRIDGE() external view returns (StandardBridge) {
        return otherBridge;
    }

    /// @notice This function should return true if the contract is paused.
    ///         On L1 this function will check the SuperchainConfig for its paused status.
    ///         On L2 this function should be a no-op.
    /// @return Whether or not the contract is paused.
    function paused() public view virtual returns (bool) {
        return false;
    }

    /// @notice Initiates a bridge of an NFT to the caller's account on the other chain. Note that
    ///         this function can only be called by EOAs. Smart contract wallets should use the
    ///         `bridgeERC721To` function after ensuring that the recipient address on the remote
    ///         chain exists. Also note that the current owner of the token on this chain must
    ///         approve this contract to operate the NFT before it can be bridged.
    ///         **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
    ///         bridge only supports ERC721s originally deployed on Ethereum. Users will need to
    ///         wait for the one-week challenge period to elapse before their Optimism-native NFT
    ///         can be refunded on L2.
    /// @param _localToken  Address of the ERC721 on this domain.
    /// @param _remoteToken Address of the ERC721 on the remote domain.
    /// @param _tokenId     Token ID to bridge.
    /// @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
    /// @param _extraData   Optional data to forward to the other chain. Data supplied here will not
    ///                     be used to execute any code on the other chain and is only emitted as
    ///                     extra data for the convenience of off-chain tooling.
    function bridgeERC721(
        address _localToken,
        address _remoteToken,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    )
        external
    {
        // Modifier requiring sender to be EOA. This prevents against a user error that would occur
        // if the sender is a smart contract wallet that has a different address on the remote chain
        // (or doesn't have an address on the remote chain at all). The user would fail to receive
        // the NFT if they use this function because it sends the NFT to the same address as the
        // caller. This check could be bypassed by a malicious contract via initcode, but it takes
        // care of the user error we want to avoid.
        require(EOA.isSenderEOA(), "ERC721Bridge: account is not externally owned");

        _initiateBridgeERC721(_localToken, _remoteToken, msg.sender, msg.sender, _tokenId, _minGasLimit, _extraData);
    }

    /// @notice Initiates a bridge of an NFT to some recipient's account on the other chain. Note
    ///         that the current owner of the token on this chain must approve this contract to
    ///         operate the NFT before it can be bridged.
    ///         **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
    ///         bridge only supports ERC721s originally deployed on Ethereum. Users will need to
    ///         wait for the one-week challenge period to elapse before their Optimism-native NFT
    ///         can be refunded on L2.
    /// @param _localToken  Address of the ERC721 on this domain.
    /// @param _remoteToken Address of the ERC721 on the remote domain.
    /// @param _to          Address to receive the token on the other domain.
    /// @param _tokenId     Token ID to bridge.
    /// @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
    /// @param _extraData   Optional data to forward to the other chain. Data supplied here will not
    ///                     be used to execute any code on the other chain and is only emitted as
    ///                     extra data for the convenience of off-chain tooling.
    function bridgeERC721To(
        address _localToken,
        address _remoteToken,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    )
        external
    {
        require(_to != address(0), "ERC721Bridge: nft recipient cannot be address(0)");

        _initiateBridgeERC721(_localToken, _remoteToken, msg.sender, _to, _tokenId, _minGasLimit, _extraData);
    }

    /// @notice Internal function for initiating a token bridge to the other domain.
    /// @param _localToken  Address of the ERC721 on this domain.
    /// @param _remoteToken Address of the ERC721 on the remote domain.
    /// @param _from        Address of the sender on this domain.
    /// @param _to          Address to receive the token on the other domain.
    /// @param _tokenId     Token ID to bridge.
    /// @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
    /// @param _extraData   Optional data to forward to the other domain. Data supplied here will
    ///                     not be used to execute any code on the other domain and is only emitted
    ///                     as extra data for the convenience of off-chain tooling.
    function _initiateBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    )
        internal
        virtual;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { ERC721Bridge } from "src/universal/ERC721Bridge.sol";
import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import { L1ERC721Bridge } from "src/L1/L1ERC721Bridge.sol";
import { IOptimismMintableERC721 } from "src/universal/IOptimismMintableERC721.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { StandardBridge } from "src/universal/StandardBridge.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";

/// @title L2ERC721Bridge
/// @notice The L2 ERC721 bridge is a contract which works together with the L1 ERC721 bridge to
///         make it possible to transfer ERC721 tokens from Ethereum to Optimism. This contract
///         acts as a minter for new tokens when it hears about deposits into the L1 ERC721 bridge.
///         This contract also acts as a burner for tokens being withdrawn.
///         **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
///         bridge ONLY supports ERC721s originally deployed on Ethereum. Users will need to
///         wait for the one-week challenge period to elapse before their Optimism-native NFT
///         can be refunded on L2.
contract L2ERC721Bridge is ERC721Bridge, ISemver {
    /// @custom:semver 1.8.0
    string public constant version = "1.8.0";

    /// @notice Constructs the L2ERC721Bridge contract.
    constructor() ERC721Bridge() {
        initialize({ _l1ERC721Bridge: payable(address(0)) });
    }

    /// @notice Initializes the contract.
    /// @param _l1ERC721Bridge Address of the ERC721 bridge contract on the other network.
    function initialize(address payable _l1ERC721Bridge) public initializer {
        __ERC721Bridge_init({
            _messenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER),
            _otherBridge: StandardBridge(_l1ERC721Bridge)
        });
    }

    /// @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
    ///         recipient on this domain.
    /// @param _localToken  Address of the ERC721 token on this domain.
    /// @param _remoteToken Address of the ERC721 token on the other domain.
    /// @param _from        Address that triggered the bridge on the other domain.
    /// @param _to          Address to receive the token on this domain.
    /// @param _tokenId     ID of the token being deposited.
    /// @param _extraData   Optional data to forward to L1.
    ///                     Data supplied here will not be used to execute any code on L1 and is
    ///                     only emitted as extra data for the convenience of off-chain tooling.
    function finalizeBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        bytes calldata _extraData
    )
        external
        onlyOtherBridge
    {
        require(_localToken != address(this), "L2ERC721Bridge: local token cannot be self");

        // Note that supportsInterface makes a callback to the _localToken address which is user
        // provided.
        require(
            ERC165Checker.supportsInterface(_localToken, type(IOptimismMintableERC721).interfaceId),
            "L2ERC721Bridge: local token interface is not compliant"
        );

        require(
            _remoteToken == IOptimismMintableERC721(_localToken).remoteToken(),
            "L2ERC721Bridge: wrong remote token for Optimism Mintable ERC721 local token"
        );

        // When a deposit is finalized, we give the NFT with the same tokenId to the account
        // on L2. Note that safeMint makes a callback to the _to address which is user provided.
        IOptimismMintableERC721(_localToken).safeMint(_to, _tokenId);

        // slither-disable-next-line reentrancy-events
        emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
    }

    /// @inheritdoc ERC721Bridge
    function _initiateBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    )
        internal
        override
    {
        require(_remoteToken != address(0), "L2ERC721Bridge: remote token cannot be address(0)");

        // Check that the withdrawal is being initiated by the NFT owner
        require(
            _from == IOptimismMintableERC721(_localToken).ownerOf(_tokenId),
            "L2ERC721Bridge: Withdrawal is not being initiated by NFT owner"
        );

        // Construct calldata for l1ERC721Bridge.finalizeBridgeERC721(_to, _tokenId)
        // slither-disable-next-line reentrancy-events
        address remoteToken = IOptimismMintableERC721(_localToken).remoteToken();
        require(remoteToken == _remoteToken, "L2ERC721Bridge: remote token does not match given value");

        // When a withdrawal is initiated, we burn the withdrawer's NFT to prevent subsequent L2
        // usage
        // slither-disable-next-line reentrancy-events
        IOptimismMintableERC721(_localToken).burn(_from, _tokenId);

        bytes memory message = abi.encodeWithSelector(
            L1ERC721Bridge.finalizeBridgeERC721.selector, remoteToken, _localToken, _from, _to, _tokenId, _extraData
        );

        // Send message to L1 bridge
        // slither-disable-next-line reentrancy-events
        messenger.sendMessage({ _target: address(otherBridge), _message: message, _minGasLimit: _minGasLimit });

        // slither-disable-next-line reentrancy-events
        emit ERC721BridgeInitiated(_localToken, remoteToken, _from, _to, _tokenId, _extraData);
    }
}

File 5 of 48 : ISemver.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
///         versioned using semantic versioning.
interface ISemver {
    /// @notice Getter for the semantic version of the contract. This is not
    ///         meant to be used onchain but instead meant to be used by offchain
    ///         tooling.
    /// @return Semver contract version as a string.
    function version() external view returns (string memory);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Predeploys
/// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
//          This excludes the preinstalls (non-protocol contracts).
library Predeploys {
    /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
    uint256 internal constant PREDEPLOY_COUNT = 2048;

    /// @notice Address of the canonical WETH9 contract.
    address internal constant WETH9 = 0x4200000000000000000000000000000000000006;

    /// @notice Address of the L2CrossDomainMessenger predeploy.
    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;

    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
    ///         and helpers for computing the L1 portion of the transaction fee.
    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;

    /// @notice Address of the L2StandardBridge predeploy.
    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;

    //// @notice Address of the SequencerFeeWallet predeploy.
    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;

    /// @notice Address of the OptimismMintableERC20Factory predeploy.
    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;

    /// @notice Address of the L2ERC721Bridge predeploy.
    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;

    /// @notice Address of the L1Block predeploy.
    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;

    /// @notice Address of the L2ToL1MessagePasser predeploy.
    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;

    /// @notice Address of the OptimismMintableERC721Factory predeploy.
    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;

    /// @notice Address of the ProxyAdmin predeploy.
    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;

    /// @notice Address of the BaseFeeVault predeploy.
    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;

    /// @notice Address of the L1FeeVault predeploy.
    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;

    /// @notice Address of the SchemaRegistry predeploy.
    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;

    /// @notice Address of the EAS predeploy.
    address internal constant EAS = 0x4200000000000000000000000000000000000021;

    /// @notice Address of the GovernanceToken predeploy.
    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;

    /// @notice Address of the L2Controller predeploy.
    address internal constant L2_CONTROLLER = 0x4200000000000000000000000000000000000100;

    /// @notice Returns the name of the predeploy at the given address.
    function getName(address _addr) internal pure returns (string memory out_) {
        require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
        if (_addr == WETH9) return "WETH9";
        if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
        if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
        if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
        if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
        if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
        if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
        if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
        if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
        if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
        if (_addr == PROXY_ADMIN) return "ProxyAdmin";
        if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
        if (_addr == L1_FEE_VAULT) return "L1FeeVault";
        if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
        if (_addr == EAS) return "EAS";
        if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
        if (_addr == L2_CONTROLLER) return "L2Controller";
        revert("Predeploys: unnamed predeploy");
    }

    /// @notice Returns true if the predeploy is not proxied.
    function notProxied(address _addr) internal pure returns (bool) {
        return _addr == GOVERNANCE_TOKEN || _addr == WETH9;
    }

    /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
    function isSupportedPredeploy(address _addr) internal pure returns (bool) {
        return _addr == WETH9
            || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
            || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY
            || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
            || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
            || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
            || _addr == L2_CONTROLLER;
    }

    function isPredeployNamespace(address _addr) internal pure returns (bool) {
        return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
    }

    /// @notice Function to compute the expected address of the predeploy implementation
    ///         in the genesis state.
    function predeployToCodeNamespace(address _addr) internal pure returns (address) {
        require(
            isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
        );
        return address(
            uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
        );
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Constants } from "src/libraries/Constants.sol";

/// @custom:upgradeable
/// @title CrossDomainMessenger
/// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
///         cross-chain messenger contracts. It's designed to be a universal interface that only
///         needs to be extended slightly to provide low-level message passing functionality on each
///         chain it's deployed on. Currently only designed for message passing between two paired
///         chains and does not support one-to-many interactions.
///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
abstract contract CrossDomainMessenger is Initializable {
    /// @notice Current message version identifier.
    uint16 public constant MESSAGE_VERSION = 1;

    /// @notice Constant overhead added to the base gas for a message.
    uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;

    /// @notice Numerator for dynamic overhead added to the base gas for a message.
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;

    /// @notice Denominator for dynamic overhead added to the base gas for a message.
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;

    /// @notice Extra gas added to base gas for each byte of calldata in a message.
    uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;

    /// @notice Gas reserved for performing the external call in `relayMessage`.
    uint64 public constant RELAY_CALL_OVERHEAD = 40_000;

    /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
    uint64 public constant RELAY_RESERVED_GAS = 40_000;

    /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
    ///         call in `relayMessage`.
    uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;

    /// @notice Base gas required for any transaction in the EVM.
    uint64 public constant TX_BASE_GAS = 21_000;

    /// @notice Floor overhead per byte of non-zero calldata in a message. Calldata floor was
    ///         introduced in EIP-7623.
    uint64 public constant FLOOR_CALLDATA_OVERHEAD = 40;

    /// @notice Overhead added to the internal message data when the full call to relayMessage is
    ///         ABI encoded. This is a constant value that is specific to the V1 message encoding
    ///         scheme. 260 is an upper bound, actual overhead can be as low as 228 bytes for an
    ///         empty message.
    uint64 public constant ENCODING_OVERHEAD = 260;

    /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
    ///         be present in this mapping if it has successfully been relayed on this chain, and
    ///         can therefore not be relayed again.
    mapping(bytes32 => bool) public successfulMessages;

    /// @notice Address of the sender of the currently executing message on the other chain. If the
    ///         value of this variable is the default value (0x00000000...dead) then no message is
    ///         currently being executed. Use the xDomainMessageSender getter which will throw an
    ///         error if this is the case.
    address internal xDomainMsgSender;

    /// @notice Nonce for the next message to be sent, without the message version applied. Use the
    ///         messageNonce getter which will insert the message version into the nonce to give you
    ///         the actual nonce to be used for the message.
    uint240 internal msgNonce;

    /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
    ///         executed at least once. A message will not be present in this mapping if it
    ///         successfully executed on the first attempt.
    mapping(bytes32 => bool) public failedMessages;

    /// @notice CrossDomainMessenger contract on the other chain.
    /// @custom:network-specific
    CrossDomainMessenger public otherMessenger;

    /// @notice Reserve extra slots in the storage layout for future upgrades.
    ///         A gap size of 41 was chosen here, so that the first slot used in a child contract
    ///         would be 1 plus a multiple of 50.
    uint256[41] private __gap;

    /// @notice Emitted whenever a message is sent to the other chain.
    /// @param target       Address of the recipient of the message.
    /// @param sender       Address of the sender of the message.
    /// @param message      Message to trigger the recipient address with.
    /// @param messageNonce Unique nonce attached to the message.
    /// @param gasLimit     Minimum gas limit that the message can be executed with.
    event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);

    /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
    ///         SentMessage event without breaking the ABI of this contract, this is good enough.
    /// @param sender Address of the sender of the message.
    /// @param value  ETH value sent along with the message to the recipient.
    event SentMessageExtension1(address indexed sender, uint256 value);

    /// @notice Emitted whenever a message is successfully relayed on this chain.
    /// @param msgHash Hash of the message that was relayed.
    event RelayedMessage(bytes32 indexed msgHash);

    /// @notice Emitted whenever a message fails to be relayed on this chain.
    /// @param msgHash Hash of the message that failed to be relayed.
    event FailedRelayedMessage(bytes32 indexed msgHash);

    /// @notice Sends a message to some target address on the other chain. Note that if the call
    ///         always reverts, then the message will be unrelayable, and any ETH sent will be
    ///         permanently locked. The same will occur if the target on the other chain is
    ///         considered unsafe (see the _isUnsafeTarget() function).
    /// @param _target      Target contract or wallet address.
    /// @param _message     Message to trigger the target address with.
    /// @param _minGasLimit Minimum gas limit that the message can be executed with.
    function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
        // Triggers a message to the other messenger. Note that the amount of gas provided to the
        // message is the amount of gas requested by the user PLUS the base gas value. We want to
        // guarantee the property that the call to the target contract will always have at least
        // the minimum gas limit specified by the user.
        _sendMessage({
            _to: address(otherMessenger),
            _gasLimit: baseGas(_message, _minGasLimit),
            _value: msg.value,
            _data: abi.encodeWithSelector(
                this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
            )
        });

        emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
        emit SentMessageExtension1(msg.sender, msg.value);

        unchecked {
            ++msgNonce;
        }
    }

    /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
    ///         be executed via cross-chain call from the other messenger OR if the message was
    ///         already received once and is currently being replayed.
    /// @param _nonce       Nonce of the message being relayed.
    /// @param _sender      Address of the user who sent the message.
    /// @param _target      Address that the message is targeted at.
    /// @param _value       ETH value to send with the message.
    /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
    /// @param _message     Message to send to the target.
    function relayMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _minGasLimit,
        bytes calldata _message
    )
        external
        payable
    {
        // On L1 this function will check the Portal for its paused status.
        // On L2 this function should be a no-op, because paused will always return false.
        require(paused() == false, "CrossDomainMessenger: paused");

        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        require(version == 1, "CrossDomainMessenger: only version 1 messages are supported at this time");

        // We use the v1 message hash as the unique identifier for the message because it commits
        // to the value and minimum gas limit of the message.
        bytes32 versionedHash =
            Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);

        if (_isOtherMessenger()) {
            // These properties should always hold when the message is first submitted (as
            // opposed to being replayed).
            assert(msg.value == _value);
            assert(!failedMessages[versionedHash]);
        } else {
            require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");

            require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
        }

        require(
            _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
        );

        require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");

        // If there is not enough gas left to perform the external call and finish the execution,
        // return early and assign the message to the failedMessages mapping.
        // We are asserting that we have enough gas to:
        // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
        //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
        // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
        //
        // If `xDomainMsgSender` is not the default L2 sender, this function
        // is being re-entered. This marks the message as failed to allow it to be replayed.
        if (
            !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
        ) {
            failedMessages[versionedHash] = true;
            emit FailedRelayedMessage(versionedHash);

            // Revert in this case if the transaction was triggered by the estimation address. This
            // should only be possible during gas estimation or we have bigger problems. Reverting
            // here will make the behavior of gas estimation change such that the gas limit
            // computed will be the amount required to relay the message, even if that amount is
            // greater than the minimum gas limit specified by the user.
            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("CrossDomainMessenger: failed to relay message");
            }

            return;
        }

        xDomainMsgSender = _sender;
        bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;

        if (success) {
            // This check is identical to one above, but it ensures that the same message cannot be relayed
            // twice, and adds a layer of protection against rentrancy.
            assert(successfulMessages[versionedHash] == false);
            successfulMessages[versionedHash] = true;
            emit RelayedMessage(versionedHash);
        } else {
            failedMessages[versionedHash] = true;
            emit FailedRelayedMessage(versionedHash);

            // Revert in this case if the transaction was triggered by the estimation address. This
            // should only be possible during gas estimation or we have bigger problems. Reverting
            // here will make the behavior of gas estimation change such that the gas limit
            // computed will be the amount required to relay the message, even if that amount is
            // greater than the minimum gas limit specified by the user.
            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("CrossDomainMessenger: failed to relay message");
            }
        }
    }

    /// @notice Retrieves the address of the contract or wallet that initiated the currently
    ///         executing message on the other chain. Will throw an error if there is no message
    ///         currently being executed. Allows the recipient of a call to see who triggered it.
    /// @return Address of the sender of the currently executing message on the other chain.
    function xDomainMessageSender() external view returns (address) {
        require(
            xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
        );

        return xDomainMsgSender;
    }

    /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
    ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
    /// @return CrossDomainMessenger contract on the other chain.
    /// @custom:legacy
    function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
        return otherMessenger;
    }

    /// @notice Retrieves the next message nonce. Message version will be added to the upper two
    ///         bytes of the message nonce. Message version allows us to treat messages as having
    ///         different structures.
    /// @return Nonce of the next message to be sent, with added message version.
    function messageNonce() public view returns (uint256) {
        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
    }

    /// @notice Computes the amount of gas required to guarantee that a given message will be
    ///         received on the other chain without running out of gas. Guaranteeing that a message
    ///         will not run out of gas is important because this ensures that a message can always
    ///         be replayed on the other chain if it fails to execute completely.
    /// @param _message     Message to compute the amount of required gas for.
    /// @param _minGasLimit Minimum desired gas limit when message goes to target.
    /// @return Amount of gas required to guarantee message receipt.
    function baseGas(bytes memory _message, uint32 _minGasLimit) public pure returns (uint64) {
        // Base gas should really be computed on the fully encoded message but that would break the
        // expected API, so we instead just add the encoding overhead to the message length inside
        // of this function.

        // We need a minimum amount of execution gas to ensure that the message will be received on
        // the other side without running out of gas (stored within the failedMessages mapping).
        // If we get beyond the hasMinGas check, then we *must* supply more than minGasLimit to
        // the external call.
        uint64 executionGas = uint64(
            // Constant costs for relayMessage
            RELAY_CONSTANT_OVERHEAD
            // Covers dynamic parts of the CALL opcode
            + RELAY_CALL_OVERHEAD
            // Ensures execution of relayMessage completes after call
            + RELAY_RESERVED_GAS
            // Buffer between hasMinGas check and the CALL
            + RELAY_GAS_CHECK_BUFFER
            // Minimum gas limit, multiplied by 64/63 to account for EIP-150.
            + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
        );

        // Total message size is the result of properly ABI encoding the call to relayMessage.
        // Since we only get the message data and not the rest of the calldata, we use the
        // ENCODING_OVERHEAD constant to conservatively account for the remaining bytes.
        uint64 totalMessageSize = uint64(_message.length + ENCODING_OVERHEAD);

        // Finally, replicate the transaction cost formula as defined after EIP-7623. This is
        // mostly relevant in the L1 -> L2 case because we need to be able to cover the intrinsic
        // cost of the message but it doesn't hurt in the L2 -> L1 case. After EIP-7623, the cost
        // of a transaction is floored by its calldata size. We don't need to account for the
        // contract creation case because this is always a call to relayMessage.
        return TX_BASE_GAS
            + uint64(
                Math.max(
                    executionGas + (totalMessageSize * MIN_GAS_CALLDATA_OVERHEAD),
                    (totalMessageSize * FLOOR_CALLDATA_OVERHEAD)
                )
            );
    }

    /// @notice Initializer.
    /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
    function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
        // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
        // meaning that this is a fresh contract deployment.
        // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
        // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
        if (xDomainMsgSender == address(0)) {
            xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
        }
        otherMessenger = _otherMessenger;
    }

    /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
    ///         contracts because the logic for this depends on the network where the messenger is
    ///         being deployed.
    /// @param _to       Recipient of the message on the other chain.
    /// @param _gasLimit Minimum gas limit the message can be executed with.
    /// @param _value    Amount of ETH to send with the message.
    /// @param _data     Message data.
    function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;

    /// @notice Checks whether the message is coming from the other messenger. Implemented by child
    ///         contracts because the logic for this depends on the network where the messenger is
    ///         being deployed.
    /// @return Whether the message is coming from the other messenger.
    function _isOtherMessenger() internal view virtual returns (bool);

    /// @notice Checks whether a given call target is a system address that could cause the
    ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
    ///         addresses. This is ONLY used to prevent the execution of messages to specific
    ///         system addresses that could cause security issues, e.g., having the
    ///         CrossDomainMessenger send messages to itself.
    /// @param _target Address of the contract to check.
    /// @return Whether or not the address is an unsafe system address.
    function _isUnsafeTarget(address _target) internal view virtual returns (bool);

    /// @notice This function should return true if the contract is paused.
    ///         On L1 this function will check the SuperchainConfig for its paused status.
    ///         On L2 this function should be a no-op.
    /// @return Whether or not the contract is paused.
    function paused() public view virtual returns (bool) {
        return false;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { EOA } from "src/libraries/EOA.sol";
import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
import { AccessControlPausable } from "src/universal/AccessControlPausable.sol";
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";

/// @custom:upgradeable
/// @title StandardBridge
/// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
///         the core bridging logic, including escrowing tokens that are native to the local chain
///         and minting/burning tokens that are native to the remote chain.
abstract contract StandardBridge is Initializable {
    using SafeERC20 for IERC20;

    /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
    uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;

    /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
    mapping(address => mapping(address => uint256)) public deposits;

    /// @notice Messenger contract on this domain.
    /// @custom:network-specific
    CrossDomainMessenger public messenger;

    /// @notice Corresponding bridge on the other domain.
    /// @custom:network-specific
    StandardBridge public otherBridge;

    /// @notice Contract that controls whether pausing is enabled
    AccessControlPausable public accessController;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    ///         A gap size of 45 was chosen here, so that the first slot used in a child contract
    ///         would be a multiple of 50.
    uint256[45] private __gap;

    /// @notice Emitted when an ETH bridge is initiated to the other chain.
    /// @param from      Address of the sender.
    /// @param to        Address of the receiver.
    /// @param amount    Amount of ETH sent.
    /// @param extraData Extra data sent with the transaction.
    event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);

    /// @notice Emitted when an ETH bridge is finalized on this chain.
    /// @param from      Address of the sender.
    /// @param to        Address of the receiver.
    /// @param amount    Amount of ETH sent.
    /// @param extraData Extra data sent with the transaction.
    event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);

    /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
    /// @param localToken  Address of the ERC20 on this chain.
    /// @param remoteToken Address of the ERC20 on the remote chain.
    /// @param from        Address of the sender.
    /// @param to          Address of the receiver.
    /// @param amount      Amount of the ERC20 sent.
    /// @param extraData   Extra data sent with the transaction.
    event ERC20BridgeInitiated(
        address indexed localToken,
        address indexed remoteToken,
        address indexed from,
        address to,
        uint256 amount,
        bytes extraData
    );

    /// @notice Emitted when an ERC20 bridge is finalized on this chain.
    /// @param localToken  Address of the ERC20 on this chain.
    /// @param remoteToken Address of the ERC20 on the remote chain.
    /// @param from        Address of the sender.
    /// @param to          Address of the receiver.
    /// @param amount      Amount of the ERC20 sent.
    /// @param extraData   Extra data sent with the transaction.
    event ERC20BridgeFinalized(
        address indexed localToken,
        address indexed remoteToken,
        address indexed from,
        address to,
        uint256 amount,
        bytes extraData
    );

    /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
    ///         calling code within their constructors, but also doesn't really matter since we're
    ///         just trying to prevent users accidentally depositing with smart contract wallets.
    modifier onlyEOA() {
        require(EOA.isSenderEOA(), "StandardBridge: function can only be called from an EOA");
        _;
    }

    /// @notice Ensures that the caller is a cross-chain message from the other bridge.
    modifier onlyOtherBridge() {
        require(
            msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
            "StandardBridge: function can only be called from the other bridge"
        );
        _;
    }

    /// @notice Initializer.
    /// @param _messenger   Contract for CrossDomainMessenger on this network.
    /// @param _otherBridge Contract for the other StandardBridge contract.
    function __StandardBridge_init(
        CrossDomainMessenger _messenger,
        StandardBridge _otherBridge,
        AccessControlPausable _accessController
    )
        internal
    {
        messenger = _messenger;
        otherBridge = _otherBridge;
        accessController = _accessController;
    }

    /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
    ///         Must be implemented by contracts that inherit.
    receive() external payable virtual;

    /// @notice Getter for messenger contract.
    ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
    /// @return Contract of the messenger on this domain.
    /// @custom:legacy
    function MESSENGER() external view returns (CrossDomainMessenger) {
        return messenger;
    }

    /// @notice Getter for the other bridge contract.
    ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
    /// @return Contract of the bridge on the other network.
    /// @custom:legacy
    function OTHER_BRIDGE() external view returns (StandardBridge) {
        return otherBridge;
    }

    /// @notice This function should return true if the contract is paused.
    ///         On L1 this function will check the SuperchainConfig for its paused status.
    ///         On L2 this function will check the L2Controller for its paused status.
    /// @return Whether or not the contract is paused.
    function paused() public view virtual returns (bool) {
        return accessController.paused();
    }

    /// @notice Sends ETH to the sender's address on the other chain.
    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
    ///                     not be triggered with this data, but it will be emitted and can be used
    ///                     to identify the transaction.
    function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
        _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
    }

    /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
    ///         smart contract and the call fails, the ETH will be temporarily locked in the
    ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
    ///         replayed with any amount of gas (call always reverts), then the ETH will be
    ///         permanently locked in the StandardBridge on the other chain. ETH will also
    ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
    ///         in that case.
    /// @param _to          Address of the receiver.
    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
    ///                     not be triggered with this data, but it will be emitted and can be used
    ///                     to identify the transaction.
    function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
        _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
    }

    /// @notice Sends ERC20 tokens to the sender's address on the other chain.
    /// @param _localToken  Address of the ERC20 on this chain.
    /// @param _remoteToken Address of the corresponding token on the remote chain.
    /// @param _amount      Amount of local tokens to deposit.
    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
    ///                     not be triggered with this data, but it will be emitted and can be used
    ///                     to identify the transaction.
    function bridgeERC20(
        address _localToken,
        address _remoteToken,
        uint256 _amount,
        uint32 _minGasLimit,
        bytes calldata _extraData
    )
        public
        virtual
        onlyEOA
    {
        _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
    }

    /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
    /// @param _localToken  Address of the ERC20 on this chain.
    /// @param _remoteToken Address of the corresponding token on the remote chain.
    /// @param _to          Address of the receiver.
    /// @param _amount      Amount of local tokens to deposit.
    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
    ///                     not be triggered with this data, but it will be emitted and can be used
    ///                     to identify the transaction.
    function bridgeERC20To(
        address _localToken,
        address _remoteToken,
        address _to,
        uint256 _amount,
        uint32 _minGasLimit,
        bytes calldata _extraData
    )
        public
        virtual
    {
        _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
    }

    /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
    ///         StandardBridge contract on the remote chain.
    /// @param _from      Address of the sender.
    /// @param _to        Address of the receiver.
    /// @param _amount    Amount of ETH being bridged.
    /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
    ///                   not be triggered with this data, but it will be emitted and can be used
    ///                   to identify the transaction.
    function finalizeBridgeETH(
        address _from,
        address _to,
        uint256 _amount,
        bytes calldata _extraData
    )
        public
        payable
        onlyOtherBridge
    {
        require(paused() == false, "StandardBridge: paused");
        require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
        require(_to != address(this), "StandardBridge: cannot send to self");
        require(_to != address(messenger), "StandardBridge: cannot send to messenger");

        // Emit the correct events. By default this will be _amount, but child
        // contracts may override this function in order to emit legacy events as well.
        _emitETHBridgeFinalized(_from, _to, _amount, _extraData);

        bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
        require(success, "StandardBridge: ETH transfer failed");
    }

    /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
    ///         StandardBridge contract on the remote chain.
    /// @param _localToken  Address of the ERC20 on this chain.
    /// @param _remoteToken Address of the corresponding token on the remote chain.
    /// @param _from        Address of the sender.
    /// @param _to          Address of the receiver.
    /// @param _amount      Amount of the ERC20 being bridged.
    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
    ///                     not be triggered with this data, but it will be emitted and can be used
    ///                     to identify the transaction.
    function finalizeBridgeERC20(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _amount,
        bytes calldata _extraData
    )
        public
        onlyOtherBridge
    {
        require(paused() == false, "StandardBridge: paused");

        if (_isOptimismMintableERC20(_localToken)) {
            require(
                _isCorrectTokenPair(_localToken, _remoteToken),
                "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
            );

            OptimismMintableERC20(_localToken).mint(_to, _amount);
        } else {
            deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
            IERC20(_localToken).safeTransfer(_to, _amount);
        }

        // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
        // contracts may override this function in order to emit legacy events as well.
        _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
    }

    /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
    /// @param _from        Address of the sender.
    /// @param _to          Address of the receiver.
    /// @param _amount      Amount of ETH being bridged.
    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
    ///                     not be triggered with this data, but it will be emitted and can be used
    ///                     to identify the transaction.
    function _initiateBridgeETH(
        address _from,
        address _to,
        uint256 _amount,
        uint32 _minGasLimit,
        bytes memory _extraData
    )
        internal
    {
        require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");

        // Emit the correct events. By default this will be _amount, but child
        // contracts may override this function in order to emit legacy events as well.
        _emitETHBridgeInitiated(_from, _to, _amount, _extraData);

        messenger.sendMessage{ value: _amount }({
            _target: address(otherBridge),
            _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
            _minGasLimit: _minGasLimit
        });
    }

    /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
    /// @param _localToken  Address of the ERC20 on this chain.
    /// @param _remoteToken Address of the corresponding token on the remote chain.
    /// @param _to          Address of the receiver.
    /// @param _amount      Amount of local tokens to deposit.
    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
    ///                     not be triggered with this data, but it will be emitted and can be used
    ///                     to identify the transaction.
    function _initiateBridgeERC20(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _amount,
        uint32 _minGasLimit,
        bytes memory _extraData
    )
        internal
    {
        if (_isOptimismMintableERC20(_localToken)) {
            require(
                _isCorrectTokenPair(_localToken, _remoteToken),
                "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
            );

            OptimismMintableERC20(_localToken).burn(_from, _amount);
        } else {
            IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
            deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
        }

        // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
        // contracts may override this function in order to emit legacy events as well.
        _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);

        messenger.sendMessage({
            _target: address(otherBridge),
            _message: abi.encodeWithSelector(
                this.finalizeBridgeERC20.selector,
                // Because this call will be executed on the remote chain, we reverse the order of
                // the remote and local token addresses relative to their order in the
                // finalizeBridgeERC20 function.
                _remoteToken,
                _localToken,
                _from,
                _to,
                _amount,
                _extraData
            ),
            _minGasLimit: _minGasLimit
        });
    }

    /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
    ///         Just the way we like it.
    /// @param _token Address of the token to check.
    /// @return True if the token is an OptimismMintableERC20.
    function _isOptimismMintableERC20(address _token) internal view returns (bool) {
        return ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
    }

    /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
    ///         Calls can be saved in the future by combining this logic with
    ///         `_isOptimismMintableERC20`.
    /// @param _mintableToken OptimismMintableERC20 to check against.
    /// @param _otherToken    Pair token to check.
    /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
    function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
        return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
    }

    /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
    ///         when an ETH bridge is finalized on this chain.
    /// @param _from      Address of the sender.
    /// @param _to        Address of the receiver.
    /// @param _amount    Amount of ETH sent.
    /// @param _extraData Extra data sent with the transaction.
    function _emitETHBridgeInitiated(
        address _from,
        address _to,
        uint256 _amount,
        bytes memory _extraData
    )
        internal
        virtual
    {
        emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
    }

    /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
    ///         ETH bridge is finalized on this chain.
    /// @param _from      Address of the sender.
    /// @param _to        Address of the receiver.
    /// @param _amount    Amount of ETH sent.
    /// @param _extraData Extra data sent with the transaction.
    function _emitETHBridgeFinalized(
        address _from,
        address _to,
        uint256 _amount,
        bytes memory _extraData
    )
        internal
        virtual
    {
        emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
    }

    /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
    ///         event when an ERC20 bridge is initiated to the other chain.
    /// @param _localToken  Address of the ERC20 on this chain.
    /// @param _remoteToken Address of the ERC20 on the remote chain.
    /// @param _from        Address of the sender.
    /// @param _to          Address of the receiver.
    /// @param _amount      Amount of the ERC20 sent.
    /// @param _extraData   Extra data sent with the transaction.
    function _emitERC20BridgeInitiated(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _amount,
        bytes memory _extraData
    )
        internal
        virtual
    {
        emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
    }

    /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
    ///         event when an ERC20 bridge is initiated to the other chain.
    /// @param _localToken  Address of the ERC20 on this chain.
    /// @param _remoteToken Address of the ERC20 on the remote chain.
    /// @param _from        Address of the sender.
    /// @param _to          Address of the receiver.
    /// @param _amount      Amount of the ERC20 sent.
    /// @param _extraData   Extra data sent with the transaction.
    function _emitERC20BridgeFinalized(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _amount,
        bytes memory _extraData
    )
        internal
        virtual
    {
        emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { ResourceMetering } from "src/L1/ResourceMetering.sol";

/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
///         the stuff used in multiple contracts. Constants that only apply to a single contract
///         should be defined in that contract instead.
library Constants {
    /// @notice Special address to be used as the tx origin for gas estimation calls in the
    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
    ///         the minimum gas limit specified by the user is not actually enough to execute the
    ///         given message and you're attempting to estimate the actual necessary gas limit. We
    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
    ///         never have any code on any EVM chain.
    address internal constant ESTIMATION_ADDRESS = address(1);

    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
    ///         non-zero to reduce the gas cost of message passing transactions.
    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;

    /// @notice The storage slot that holds the address of a proxy implementation.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /// @notice The storage slot that holds the address of the owner.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
    ///         for a production network.
    function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
        ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
            maxResourceLimit: 8_000_000,
            elasticityMultiplier: 10,
            baseFeeMaxChangeDenominator: 8,
            maxTransactionLimit: 8,
            minimumBaseFee: 1 gwei,
            systemTxMaxGas: 1_000_000,
            maximumBaseFee: type(uint128).max
        });
        return config;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { ISemver } from "src/universal/ISemver.sol";
import { AccessControlPausable } from "src/universal/AccessControlPausable.sol";

/// @custom:audit none This contracts is not yet audited.
/// @title SuperchainConfig
/// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
contract SuperchainConfig is AccessControlPausable, ISemver {
    /// @notice Semantic version.
    /// @custom:semver 1.1.0
    string public constant version = "1.1.0";

    /// @notice Constructs the SuperchainConfig contract.
    constructor() {
        initialize({ _admin: address(0xdead), _paused: false });
    }

    /// @notice Initializer.
    /// @param _admin    Address of the admin, can control access roles.
    /// @param _paused      Initial paused status.
    function initialize(address _admin, bool _paused) public initializer {
        // assign the _admin address the DEFAULT_ADMIN_ROLE
        // changing admin addresses requires 1 day to pass
        __AccessControlPausable_init(1 days, _admin);
        if (_paused) {
            _pause("Initializer paused");
        }
    }

    /// @notice Alias for the DEFAULT_ADMIN_ROLE
    function guardian() external view returns (address) {
        return defaultAdmin();
    }
}

File 11 of 48 : EOA.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title EOA
/// @notice A library for detecting if an address is an EOA.
library EOA {
    /// @notice Returns true if sender address is an EOA.
    /// @return isEOA_ True if the sender address is an EOA.
    function isSenderEOA() internal view returns (bool isEOA_) {
        if (msg.sender == tx.origin) {
            isEOA_ = true;
        } else if (address(msg.sender).code.length == 23) {
            // If the sender is not the origin, check for 7702 delegated EOAs.
            assembly {
                let ptr := mload(0x40)
                mstore(0x40, add(ptr, 0x20))
                extcodecopy(caller(), ptr, 0, 0x20)
                isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
            }
        } else {
            // If more or less than 23 bytes of code, not a 7702 delegated EOA.
            isEOA_ = false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165Checker.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Library used to query support of an interface declared via {IERC165}.
 *
 * Note that these functions return the actual result of the query: they do not
 * `revert` if an interface is not supported. It is up to the caller to decide
 * what to do in these cases.
 */
library ERC165Checker {
    // As per the EIP-165 spec, no interface should ever match 0xffffffff
    bytes4 private constant INTERFACE_ID_INVALID = 0xffffffff;

    /**
     * @dev Returns true if `account` supports the {IERC165} interface.
     */
    function supportsERC165(address account) internal view returns (bool) {
        // Any contract that implements ERC165 must explicitly indicate support of
        // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
        return
            supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) &&
            !supportsERC165InterfaceUnchecked(account, INTERFACE_ID_INVALID);
    }

    /**
     * @dev Returns true if `account` supports the interface defined by
     * `interfaceId`. Support for {IERC165} itself is queried automatically.
     *
     * See {IERC165-supportsInterface}.
     */
    function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
        // query support of both ERC165 as per the spec and support of _interfaceId
        return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId);
    }

    /**
     * @dev Returns a boolean array where each value corresponds to the
     * interfaces passed in and whether they're supported or not. This allows
     * you to batch check interfaces for a contract where your expectation
     * is that some interfaces may not be supported.
     *
     * See {IERC165-supportsInterface}.
     */
    function getSupportedInterfaces(
        address account,
        bytes4[] memory interfaceIds
    ) internal view returns (bool[] memory) {
        // an array of booleans corresponding to interfaceIds and whether they're supported or not
        bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);

        // query support of ERC165 itself
        if (supportsERC165(account)) {
            // query support of each interface in interfaceIds
            for (uint256 i = 0; i < interfaceIds.length; i++) {
                interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]);
            }
        }

        return interfaceIdsSupported;
    }

    /**
     * @dev Returns true if `account` supports all the interfaces defined in
     * `interfaceIds`. Support for {IERC165} itself is queried automatically.
     *
     * Batch-querying can lead to gas savings by skipping repeated checks for
     * {IERC165} support.
     *
     * See {IERC165-supportsInterface}.
     */
    function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
        // query support of ERC165 itself
        if (!supportsERC165(account)) {
            return false;
        }

        // query support of each interface in interfaceIds
        for (uint256 i = 0; i < interfaceIds.length; i++) {
            if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) {
                return false;
            }
        }

        // all interfaces supported
        return true;
    }

    /**
     * @notice Query if a contract implements an interface, does not check ERC165 support
     * @param account The address of the contract to query for support of an interface
     * @param interfaceId The interface identifier, as specified in ERC-165
     * @return true if the contract at account indicates support of the interface with
     * identifier interfaceId, false otherwise
     * @dev Assumes that account contains a contract that supports ERC165, otherwise
     * the behavior of this method is undefined. This precondition can be checked
     * with {supportsERC165}.
     *
     * Some precompiled contracts will falsely indicate support for a given interface, so caution
     * should be exercised when using this function.
     *
     * Interface identification is specified in ERC-165.
     */
    function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) {
        // prepare call
        bytes memory encodedParams = abi.encodeCall(IERC165.supportsInterface, (interfaceId));

        // perform static call
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly {
            success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0x00)
        }

        return success && returnSize >= 0x20 && returnValue > 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { IERC721Enumerable } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";

/// @title IOptimismMintableERC721
/// @notice Interface for contracts that are compatible with the OptimismMintableERC721 standard.
///         Tokens that follow this standard can be easily transferred across the ERC721 bridge.
interface IOptimismMintableERC721 is IERC721Enumerable {
    /// @notice Emitted when a token is minted.
    /// @param account Address of the account the token was minted to.
    /// @param tokenId Token ID of the minted token.
    event Mint(address indexed account, uint256 tokenId);

    /// @notice Emitted when a token is burned.
    /// @param account Address of the account the token was burned from.
    /// @param tokenId Token ID of the burned token.
    event Burn(address indexed account, uint256 tokenId);

    /// @notice Mints some token ID for a user, checking first that contract recipients
    ///         are aware of the ERC721 protocol to prevent tokens from being forever locked.
    /// @param _to      Address of the user to mint the token for.
    /// @param _tokenId Token ID to mint.
    function safeMint(address _to, uint256 _tokenId) external;

    /// @notice Burns a token ID from a user.
    /// @param _from    Address of the user to burn the token from.
    /// @param _tokenId Token ID to burn.
    function burn(address _from, uint256 _tokenId) external;

    /// @notice Chain ID of the chain where the remote token is deployed.
    function REMOTE_CHAIN_ID() external view returns (uint256);

    /// @notice Address of the token on the remote domain.
    function REMOTE_TOKEN() external view returns (address);

    /// @notice Address of the ERC721 bridge on this network.
    function BRIDGE() external view returns (address);

    /// @notice Chain ID of the chain where the remote token is deployed.
    function remoteChainId() external view returns (uint256);

    /// @notice Address of the token on the remote domain.
    function remoteToken() external view returns (address);

    /// @notice Address of the ERC721 bridge on this network.
    function bridge() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

/// @title SafeCall
/// @notice Perform low level safe calls
library SafeCall {
    /// @notice Performs a low level call without copying any returndata.
    /// @dev Passes no calldata to the call context.
    /// @param _target   Address to call
    /// @param _gas      Amount of gas to pass to the call
    /// @param _value    Amount of value to pass to the call
    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
        bool _success;
        assembly {
            _success :=
                call(
                    _gas, // gas
                    _target, // recipient
                    _value, // ether value
                    0, // inloc
                    0, // inlen
                    0, // outloc
                    0 // outlen
                )
        }
        return _success;
    }

    /// @notice Perform a low level call with all gas without copying any returndata
    /// @param _target   Address to call
    /// @param _value    Amount of value to pass to the call
    function send(address _target, uint256 _value) internal returns (bool success_) {
        success_ = send(_target, gasleft(), _value);
    }

    /// @notice Perform a low level call without copying any returndata
    /// @param _target   Address to call
    /// @param _gas      Amount of gas to pass to the call
    /// @param _value    Amount of value to pass to the call
    /// @param _calldata Calldata to pass to the call
    function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
        bool _success;
        assembly {
            _success :=
                call(
                    _gas, // gas
                    _target, // recipient
                    _value, // ether value
                    add(_calldata, 32), // inloc
                    mload(_calldata), // inlen
                    0, // outloc
                    0 // outlen
                )
        }
        return _success;
    }

    /// @notice Helper function to determine if there is sufficient gas remaining within the context
    ///         to guarantee that the minimum gas requirement for a call will be met as well as
    ///         optionally reserving a specified amount of gas for after the call has concluded.
    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
    ///                     of the target context.
    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
    ///         context as well as reserve `_reservedGas` for the caller after the execution of
    ///         the target context.
    /// @dev !!!!! FOOTGUN ALERT !!!!!
    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
    ///          factors of the dynamic cost of the `CALL` opcode.
    ///      2.) This function should *directly* precede the external call if possible. There is an
    ///          added buffer to account for gas consumed between this check and the call, but it
    ///          is only 5,700 gas.
    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
    ///          truncated.
    ///      4.) Use wisely. This function is not a silver bullet.
    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
        bool _hasMinGas;
        assembly {
            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
        }
        return _hasMinGas;
    }

    /// @notice Perform a low level call without copying any returndata. This function
    ///         will revert if the call cannot be performed with the specified minimum
    ///         gas.
    /// @param _target   Address to call
    /// @param _minGas   The minimum amount of gas that may be passed to the call
    /// @param _value    Amount of value to pass to the call
    /// @param _calldata Calldata to pass to the call
    function callWithMinGas(
        address _target,
        uint256 _minGas,
        uint256 _value,
        bytes memory _calldata
    )
        internal
        returns (bool)
    {
        bool _success;
        bool _hasMinGas = hasMinGas(_minGas, 0);
        assembly {
            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
            if iszero(_hasMinGas) {
                // Store the "Error(string)" selector in scratch space.
                mstore(0, 0x08c379a0)
                // Store the pointer to the string length in scratch space.
                mstore(32, 32)
                // Store the string.
                //
                // SAFETY:
                // - We pad the beginning of the string with two zero bytes as well as the
                // length (24) to ensure that we override the free memory pointer at offset
                // 0x40. This is necessary because the free memory pointer is likely to
                // be greater than 1 byte when this function is called, but it is incredibly
                // unlikely that it will be greater than 3 bytes. As for the data within
                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                // - It's fine to clobber the free memory pointer, we're reverting.
                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)

                // Revert with 'Error("SafeCall: Not enough gas")'
                revert(28, 100)
            }

            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
            // above assertion. This ensures that, in all circumstances (except for when the
            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
            // the minimum amount of gas specified.
            _success :=
                call(
                    gas(), // gas
                    _target, // recipient
                    _value, // ether value
                    add(_calldata, 32), // inloc
                    mload(_calldata), // inlen
                    0x00, // outloc
                    0x00 // outlen
                )
        }
        return _success;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Types } from "src/libraries/Types.sol";
import { Encoding } from "src/libraries/Encoding.sol";

/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
    /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
    ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
    ///         system.
    /// @param _tx User deposit transaction to hash.
    /// @return Hash of the RLP encoded L2 deposit transaction.
    function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
        return keccak256(Encoding.encodeDepositTransaction(_tx));
    }

    /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
    ///         of the L2 transaction that corresponds to a deposit is unique and is
    ///         deterministically generated from L1 transaction data.
    /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
    /// @param _logIndex    The index of the log that created the deposit transaction.
    /// @return Hash of the deposit transaction's "source hash".
    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
        return keccak256(abi.encode(bytes32(0), depositId));
    }

    /// @notice Hashes the cross domain message based on the version that is encoded into the
    ///         message nonce.
    /// @param _nonce    Message nonce with version encoded into the first two bytes.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes32)
    {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        if (version == 0) {
            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Hashing: unknown cross domain message version");
        }
    }

    /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
    /// @param _target Address of the target of the message.
    /// @param _sender Address of the sender of the message.
    /// @param _data   Data to send with the message.
    /// @param _nonce  Message nonce.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    )
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
    }

    /// @notice Hashes a cross domain message based on the V1 (current) encoding.
    /// @param _nonce    Message nonce.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
    }

    /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
    /// @param _tx Withdrawal transaction to hash.
    /// @return Hashed withdrawal transaction.
    function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
        return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
    }

    /// @notice Hashes the various elements of an output root proof into an output root hash which
    ///         can be used to check if the proof is valid.
    /// @param _outputRootProof Output root proof which should hash to an output root.
    /// @return Hashed output root proof.
    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
        return keccak256(
            abi.encode(
                _outputRootProof.version,
                _outputRootProof.stateRoot,
                _outputRootProof.messagePasserStorageRoot,
                _outputRootProof.latestBlockhash
            )
        );
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";

/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
    /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
    ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
    ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
    /// @param _tx User deposit transaction to encode.
    /// @return RLP encoded L2 deposit transaction.
    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
        bytes[] memory raw = new bytes[](8);
        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
        raw[1] = RLPWriter.writeAddress(_tx.from);
        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
        raw[3] = RLPWriter.writeUint(_tx.mint);
        raw[4] = RLPWriter.writeUint(_tx.value);
        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
        raw[6] = RLPWriter.writeBool(false);
        raw[7] = RLPWriter.writeBytes(_tx.data);
        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
    }

    /// @notice Encodes the cross domain message based on the version that is encoded into the
    ///         message nonce.
    /// @param _nonce    Message nonce with version encoded into the first two bytes.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes memory)
    {
        (, uint16 version) = decodeVersionedNonce(_nonce);
        if (version == 0) {
            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Encoding: unknown cross domain message version");
        }
    }

    /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
    /// @param _target Address of the target of the message.
    /// @param _sender Address of the sender of the message.
    /// @param _data   Data to send with the message.
    /// @param _nonce  Message nonce.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    )
        internal
        pure
        returns (bytes memory)
    {
        return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
    }

    /// @notice Encodes a cross domain message based on the V1 (current) encoding.
    /// @param _nonce    Message nonce.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes memory)
    {
        return abi.encodeWithSignature(
            "relayMessage(uint256,address,address,uint256,uint256,bytes)",
            _nonce,
            _sender,
            _target,
            _value,
            _gasLimit,
            _data
        );
    }

    /// @notice Adds a version number into the first two bytes of a message nonce.
    /// @param _nonce   Message nonce to encode into.
    /// @param _version Version number to encode into the message nonce.
    /// @return Message nonce with version encoded into the first two bytes.
    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
        uint256 nonce;
        assembly {
            nonce := or(shl(240, _version), _nonce)
        }
        return nonce;
    }

    /// @notice Pulls the version out of a version-encoded nonce.
    /// @param _nonce Message nonce with version encoded into the first two bytes.
    /// @return Nonce without encoded version.
    /// @return Version of the message.
    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
        uint240 nonce;
        uint16 version;
        assembly {
            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            version := shr(240, _nonce)
        }
        return (nonce, version);
    }

    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
    /// @param baseFeeScalar       L1 base fee Scalar
    /// @param blobBaseFeeScalar   L1 blob base fee Scalar
    /// @param sequenceNumber      Number of L2 blocks since epoch start.
    /// @param timestamp           L1 timestamp.
    /// @param number              L1 blocknumber.
    /// @param baseFee             L1 base fee.
    /// @param blobBaseFee         L1 blob base fee.
    /// @param hash                L1 blockhash.
    /// @param batcherHash         Versioned hash to authenticate batcher by.
    function encodeSetL1BlockValuesEcotone(
        uint32 baseFeeScalar,
        uint32 blobBaseFeeScalar,
        uint64 sequenceNumber,
        uint64 timestamp,
        uint64 number,
        uint256 baseFee,
        uint256 blobBaseFee,
        bytes32 hash,
        bytes32 batcherHash
    )
        internal
        pure
        returns (bytes memory)
    {
        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
        return abi.encodePacked(
            functionSignature,
            baseFeeScalar,
            blobBaseFeeScalar,
            sequenceNumber,
            timestamp,
            number,
            baseFee,
            blobBaseFee,
            hash,
            batcherHash
        );
    }

    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotoneExclusions
    /// @param baseFeeScalar       L1 base fee Scalar
    /// @param blobBaseFeeScalar   L1 blob base fee Scalar
    /// @param sequenceNumber      Number of L2 blocks since epoch start.
    /// @param timestamp           L1 timestamp.
    /// @param number              L1 blocknumber.
    /// @param baseFee             L1 base fee.
    /// @param blobBaseFee         L1 blob base fee.
    /// @param hash                L1 blockhash.
    /// @param batcherHash         Versioned hash to authenticate batcher by.
    function encodeSetL1BlockValuesEcotoneExclusions(
        uint32 baseFeeScalar,
        uint32 blobBaseFeeScalar,
        uint64 sequenceNumber,
        uint64 timestamp,
        uint64 number,
        uint256 baseFee,
        uint256 blobBaseFee,
        bytes32 hash,
        bytes32 batcherHash,
        bytes memory depositExclusions
    )
        internal
        pure
        returns (bytes memory)
    {
        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotoneExclusions()"));
        return abi.encodePacked(
            functionSignature,
            baseFeeScalar,
            blobBaseFeeScalar,
            sequenceNumber,
            timestamp,
            number,
            baseFee,
            blobBaseFee,
            hash,
            batcherHash,
            uint256(depositExclusions.length),
            depositExclusions
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";

/// @title IOptimismMintableERC20
/// @notice This interface is available on the OptimismMintableERC20 contract.
///         We declare it as a separate interface so that it can be used in
///         custom implementations of OptimismMintableERC20.
interface IOptimismMintableERC20 is IERC165 {
    function remoteToken() external view returns (address);

    function bridge() external returns (address);

    function mint(address _to, uint256 _amount) external;

    function burn(address _from, uint256 _amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { ISemver } from "src/universal/ISemver.sol";

/// @title OptimismMintableERC20
/// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
///         to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
///         use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
///         Designed to be backwards compatible with the older StandardL2ERC20 token which was only
///         meant for use on L2.
contract OptimismMintableERC20 is IOptimismMintableERC20, ERC20, ISemver {
    /// @notice Address of the corresponding version of this token on the remote chain.
    address public immutable REMOTE_TOKEN;

    /// @notice Address of the StandardBridge on this network.
    address public immutable BRIDGE;

    /// @notice Decimals of the token
    uint8 private immutable DECIMALS;

    /// @notice Emitted whenever tokens are minted for an account.
    /// @param account Address of the account tokens are being minted for.
    /// @param amount  Amount of tokens minted.
    event Mint(address indexed account, uint256 amount);

    /// @notice Emitted whenever tokens are burned from an account.
    /// @param account Address of the account tokens are being burned from.
    /// @param amount  Amount of tokens burned.
    event Burn(address indexed account, uint256 amount);

    /// @notice A modifier that only allows the bridge to call
    modifier onlyBridge() {
        require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
        _;
    }

    /// @notice Semantic version.
    /// @custom:semver 1.3.0
    string public constant version = "1.3.0";

    /// @param _bridge      Address of the L2 standard bridge.
    /// @param _remoteToken Address of the corresponding L1 token.
    /// @param _name        ERC20 name.
    /// @param _symbol      ERC20 symbol.
    constructor(
        address _bridge,
        address _remoteToken,
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    )
        ERC20(_name, _symbol)
    {
        REMOTE_TOKEN = _remoteToken;
        BRIDGE = _bridge;
        DECIMALS = _decimals;
    }

    /// @notice Allows the StandardBridge on this network to mint tokens.
    /// @param _to     Address to mint tokens to.
    /// @param _amount Amount of tokens to mint.
    function mint(
        address _to,
        uint256 _amount
    )
        external
        virtual
        override(IOptimismMintableERC20)
        onlyBridge
    {
        _mint(_to, _amount);
        emit Mint(_to, _amount);
    }

    /// @notice Allows the StandardBridge on this network to burn tokens.
    /// @param _from   Address to burn tokens from.
    /// @param _amount Amount of tokens to burn.
    function burn(
        address _from,
        uint256 _amount
    )
        external
        virtual
        override(IOptimismMintableERC20)
        onlyBridge
    {
        _burn(_from, _amount);
        emit Burn(_from, _amount);
    }

    /// @notice ERC165 interface check function.
    /// @param _interfaceId Interface ID to check.
    /// @return Whether or not the interface is supported by this contract.
    function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
        bytes4 iface1 = type(IERC165).interfaceId;
        // Interface corresponding to the updated OptimismMintableERC20 (this contract).
        bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
        return _interfaceId == iface1 || _interfaceId == iface3;
    }

    /// @custom:legacy
    /// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
    function l1Token() public view returns (address) {
        return REMOTE_TOKEN;
    }

    /// @custom:legacy
    /// @notice Legacy getter for the bridge. Use BRIDGE going forward.
    function l2Bridge() public view returns (address) {
        return BRIDGE;
    }

    /// @custom:legacy
    /// @notice Legacy getter for REMOTE_TOKEN.
    function remoteToken() public view returns (address) {
        return REMOTE_TOKEN;
    }

    /// @custom:legacy
    /// @notice Legacy getter for BRIDGE.
    function bridge() public view returns (address) {
        return BRIDGE;
    }

    /// @dev Returns the number of decimals used to get its user representation.
    /// For example, if `decimals` equals `2`, a balance of `505` tokens should
    /// be displayed to a user as `5.05` (`505 / 10 ** 2`).
    /// NOTE: This information is only used for _display_ purposes: it in
    /// no way affects any of the arithmetic of the contract, including
    /// {IERC20-balanceOf} and {IERC20-transfer}.
    function decimals() public view override returns (uint8) {
        return DECIMALS;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { AccessControlDefaultAdminRulesUpgradeable } from "@openzeppelin/contracts-upgradeable/access/extensions/AccessControlDefaultAdminRulesUpgradeable.sol";
import { Storage } from "src/libraries/Storage.sol";

/// @title AccessControlPausable
/// @notice Provide common constants/functions for implementing access control pausability
abstract contract AccessControlPausable is AccessControlDefaultAdminRulesUpgradeable {
    /// @notice Whether or not the contract is paused.
    bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("paused")) - 1);

    /// @notice Addresses with this role are allowed to pause the contract but not unpause it.
    bytes32 public constant MONITOR_ROLE = keccak256("MONITOR_ROLE");

    /// @notice Addresses with this role are allowed to pause and unpause the contract.
    bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");

    /// @notice Emitted when the pause is triggered.
    /// @param identifier A string helping to identify provenance of the pause transaction.
    event Paused(string identifier);

    /// @notice Emitted when the pause is lifted.
    event Unpaused();

    /// @notice Returns whether `_address` has at least monitor capabilities
    function hasMonitorCapabilities(address _address) public view returns (bool) {
        return hasRole(MONITOR_ROLE, _address)
            || hasRole(OPERATOR_ROLE, _address)
            || hasRole(DEFAULT_ADMIN_ROLE, _address);
    }

    /// @notice Returns whether `_address` has operator capabilities
    function hasOperatorCapabilities(address _address) public view returns (bool) {
        return hasRole(OPERATOR_ROLE, _address)
            || hasRole(DEFAULT_ADMIN_ROLE, _address);
    }

    /// @notice Getter for the current paused status.
    function paused() public view returns (bool paused_) {
        paused_ = Storage.getBool(PAUSED_SLOT);
    }

    /// @notice Pauses deposits and withdrawals.
    /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
    function pause(string memory _identifier) external {
        require(hasMonitorCapabilities(msg.sender), "caller not allowed to pause");
        _pause(_identifier);
    }

    /// @notice Pauses deposits and withdrawals.
    /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
    function _pause(string memory _identifier) internal {
        Storage.setBool(PAUSED_SLOT, true);
        emit Paused(_identifier);
    }

    /// @notice Unpauses deposits and withdrawals.
    function unpause() external {
        require(hasOperatorCapabilities(msg.sender), "caller not allowed to unpause");
        Storage.setBool(PAUSED_SLOT, false);
        emit Unpaused();
    }

    /// @notice Sets the initial values for {defaultAdminDelay} and {defaultAdmin} address.
    function __AccessControlPausable_init(uint48 _initialDelay, address _initialDefaultAdmin) internal onlyInitializing {
        __AccessControlDefaultAdminRules_init(_initialDelay, _initialDefaultAdmin);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";

/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
///         updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
    /// @notice Error returned when too much gas resource is consumed.
    error OutOfGas();

    /// @notice Represents the various parameters that control the way in which resources are
    ///         metered. Corresponds to the EIP-1559 resource metering system.
    /// @custom:field prevBaseFee   Base fee from the previous block(s).
    /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
    /// @custom:field prevBlockNum  Last block number that the base fee was updated.
    /// @custom:field prevTxCount  Number of transactions in the current block.
    struct ResourceParams {
        uint128 prevBaseFee;
        uint64 prevBoughtGas;
        uint64 prevBlockNum;
        uint16 prevTxCount;
    }

    /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
    ///         market. These values should be set with care as it is possible to set them in
    ///         a way that breaks the deposit gas market. The target resource limit is defined as
    ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
    ///         single word. There is additional space for additions in the future.
    /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
    ///                                            can be purchased per block.
    /// @custom:field elasticityMultiplier         Determines the target resource limit along with
    ///                                            the resource limit.
    /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
    /// @custom:field maxTransactionLimit          Determines max deposit transaction count per block.
    /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
    ///                                            value.
    /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
    ///                                            transaction. This should be set to the same
    ///                                            number that the op-node sets as the gas limit
    ///                                            for the system transaction.
    /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
    ///                                            value.
    struct ResourceConfig {
        uint32 maxResourceLimit;
        uint8 elasticityMultiplier;
        uint8 baseFeeMaxChangeDenominator;
        uint16 maxTransactionLimit;
        uint32 minimumBaseFee;
        uint32 systemTxMaxGas;
        uint128 maximumBaseFee;
    }

    /// @notice EIP-1559 style gas parameters.
    ResourceParams public params;

    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
    uint256[48] private __gap;

    event GasBurned(uint256 gasAmount, address indexed sender);

    /// @notice Meters access to a function based an amount of a requested resource.
    /// @param _amount Amount of the resource requested.
    modifier metered(uint64 _amount) {
        // Record initial gas amount so we can refund for it later.
        uint256 initialGas = gasleft();

        // Run the underlying function.
        _;

        // Run the metering function.
        _metered(_amount, initialGas);
    }

    /// @notice An internal function that holds all of the logic for metering a resource.
    /// @param _amount     Amount of the resource requested.
    /// @param _initialGas The amount of gas before any modifier execution.
    function _metered(uint64 _amount, uint256 _initialGas) internal {
        // Update block number and base fee if necessary.
        uint256 blockDiff = block.number - params.prevBlockNum;

        ResourceConfig memory config = _resourceConfig();
        int256 targetResourceLimit =
            int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));

        if (blockDiff > 0) {
            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
            // at which deposits can be created and therefore limit the potential for deposits to
            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.

            // If limit deposit limit is hit, increase the gas fee by max amount
            uint256 boughtGas = params.prevBoughtGas;
            if (params.prevTxCount == config.maxTransactionLimit) {
                boughtGas = Math.max(uint256(targetResourceLimit * 2), boughtGas);
            }
            int256 gasUsedDelta = int256(boughtGas) - targetResourceLimit;
            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));

            // Update base fee by adding the base fee delta and clamp the resulting value between
            // min and max.
            int256 newBaseFee = Arithmetic.clamp({
                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                _min: int256(uint256(config.minimumBaseFee)),
                _max: int256(uint256(config.maximumBaseFee))
            });

            // If we skipped more than one block, we also need to account for every empty block.
            // Empty block means there was no demand for deposits in that block, so we should
            // reflect this lack of demand in the fee.
            if (blockDiff > 1) {
                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                // between min and max.
                newBaseFee = Arithmetic.clamp({
                    _value: Arithmetic.cdexp({
                        _coefficient: newBaseFee,
                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                        _exponent: int256(blockDiff - 1)
                    }),
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
            }

            // Update new base fee, reset bought gas, and update block number.
            params.prevBaseFee = uint128(uint256(newBaseFee));
            params.prevBoughtGas = 0;
            params.prevTxCount = 0;
            params.prevBlockNum = uint64(block.number);
        }

        params.prevTxCount += 1;
        // If limit is surpassed,
        require(params.prevTxCount <= config.maxTransactionLimit, "ResourceMetering: too many deposits in this block");

        // Make sure we can actually buy the resource amount requested by the user.
        params.prevBoughtGas += _amount;
        if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
            revert OutOfGas();
        }

        // Determine the amount of ETH to be paid.
        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);

        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
        // during any 1 day period in the last 5 years, so should be fine.
        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);

        // Give the user a refund based on the amount of gas they used to do all of the work up to
        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
        // effectively like a dynamic stipend (with a minimum value).
        uint256 usedGas = _initialGas - gasleft();
        if (gasCost > usedGas) {
            // We calculate gasToBurn based on the resourceCosts, but reserve some Gas for an event
            // that keeps track of the GasBurned. There we add the costs for the event because we
            // would be burning it otherwise
            uint256 gasToBurn = gasCost - usedGas;
            // Gas Costs For Event:
            // 375 Per LOG* operation.
            // 375 per indexed parameter
            // 8   Per byte in a LOG* operation's data.
            // 375 + 375 + 256 + 160 = 1166 (uint256 32 bytes, address 20bytes)
            uint256 estimatedEventGasCosts = 1200;

            // Ensure gasToBurn is greater than estimatedEventGasCosts to avoid underflow
            if (gasToBurn > estimatedEventGasCosts) {
                emit GasBurned(gasToBurn - estimatedEventGasCosts, tx.origin);
                // Subtract estimatedEventGasCosts because the event emission accounts for this already
                Burn.gas(gasToBurn - estimatedEventGasCosts);
            } else {
                // Handle case where gasToBurn is not enough to cover estimatedEventGasCosts
                // Emit event with what we have and burn zero gas
                emit GasBurned(estimatedEventGasCosts, tx.origin);
                Burn.gas(0);
            }
        }
    }

    /// @notice Virtual function that returns the resource config.
    ///         Contracts that inherit this contract must implement this function.
    /// @return ResourceConfig
    function _resourceConfig() internal virtual returns (ResourceConfig memory);

    /// @notice Sets initial resource parameter values.
    ///         This function must either be called by the initializer function of an upgradeable
    ///         child contract.
    // solhint-disable-next-line func-name-mixedcase
    function __ResourceMetering_init() internal onlyInitializing {
        if (params.prevBlockNum == 0) {
            params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number), prevTxCount: 0 });
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

File 29 of 48 : Types.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
    /// @notice Extension for v2 L2OutputOracle proposals that will be stored alongside
    ///         a regular OutputProposal
    /// @custom:field batchIndex        index of the batch that was used to prove the transition
    /// @custom:field batchHash         hash of the batch that was used to prove the transition
    /// @custom:field poseidonStateRoot poseidon (zktrie) output root after the transition
    struct OutputProposalEx {
        uint256 batchIndex;
        bytes32 batchHash;
        bytes32 poseidonStateRoot;
    }

    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
    ///         timestamp that the output root is posted. This timestamp is used to verify that the
    ///         finalization period has passed since the output root was submitted.
    /// @custom:field outputRoot    Hash of the L2 output.
    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
    struct OutputProposal {
        bytes32 outputRoot;
        uint128 timestamp;
        uint128 l2BlockNumber;
    }

    /// @notice Struct representing the elements that are hashed together to generate an output root
    ///         which itself represents a snapshot of the L2 state.
    /// @custom:field version                  Version of the output root.
    /// @custom:field stateRoot                Root of the state trie at the block of this output.
    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
    struct OutputRootProof {
        bytes32 version;
        bytes32 stateRoot;
        bytes32 messagePasserStorageRoot;
        bytes32 latestBlockhash;
    }

    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
    ///         user (as opposed to a system deposit transaction generated by the system).
    /// @custom:field from        Address of the sender of the transaction.
    /// @custom:field to          Address of the recipient of the transaction.
    /// @custom:field isCreation  True if the transaction is a contract creation.
    /// @custom:field value       Value to send to the recipient.
    /// @custom:field mint        Amount of ETH to mint.
    /// @custom:field gasLimit    Gas limit of the transaction.
    /// @custom:field data        Data of the transaction.
    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
    struct UserDepositTransaction {
        address from;
        address to;
        bool isCreation;
        uint256 value;
        uint256 mint;
        uint64 gasLimit;
        bytes data;
        bytes32 l1BlockHash;
        uint256 logIndex;
    }

    /// @notice Struct representing a withdrawal transaction.
    /// @custom:field nonce    Nonce of the withdrawal transaction
    /// @custom:field sender   Address of the sender of the transaction.
    /// @custom:field target   Address of the recipient of the transaction.
    /// @custom:field value    Value to send to the recipient.
    /// @custom:field gasLimit Gas limit of the transaction.
    /// @custom:field data     Data of the transaction.
    struct WithdrawalTransaction {
        uint256 nonce;
        address sender;
        address target;
        uint256 value;
        uint256 gasLimit;
        bytes data;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
///         modifications to improve legibility.
library RLPWriter {
    /// @notice RLP encodes a byte string.
    /// @param _in The byte string to encode.
    /// @return out_ The RLP encoded string in bytes.
    function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
        if (_in.length == 1 && uint8(_in[0]) < 128) {
            out_ = _in;
        } else {
            out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
        }
    }

    /// @notice RLP encodes a list of RLP encoded byte byte strings.
    /// @param _in The list of RLP encoded byte strings.
    /// @return list_ The RLP encoded list of items in bytes.
    function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
        list_ = _flatten(_in);
        list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
    }

    /// @notice RLP encodes a string.
    /// @param _in The string to encode.
    /// @return out_ The RLP encoded string in bytes.
    function writeString(string memory _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(bytes(_in));
    }

    /// @notice RLP encodes an address.
    /// @param _in The address to encode.
    /// @return out_ The RLP encoded address in bytes.
    function writeAddress(address _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(abi.encodePacked(_in));
    }

    /// @notice RLP encodes a uint.
    /// @param _in The uint256 to encode.
    /// @return out_ The RLP encoded uint256 in bytes.
    function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(_toBinary(_in));
    }

    /// @notice RLP encodes a bool.
    /// @param _in The bool to encode.
    /// @return out_ The RLP encoded bool in bytes.
    function writeBool(bool _in) internal pure returns (bytes memory out_) {
        out_ = new bytes(1);
        out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
    }

    /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
    /// @param _len    The length of the string or the payload.
    /// @param _offset 128 if item is string, 192 if item is list.
    /// @return out_ RLP encoded bytes.
    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
        if (_len < 56) {
            out_ = new bytes(1);
            out_[0] = bytes1(uint8(_len) + uint8(_offset));
        } else {
            uint256 lenLen;
            uint256 i = 1;
            while (_len / i != 0) {
                lenLen++;
                i *= 256;
            }

            out_ = new bytes(lenLen + 1);
            out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
            for (i = 1; i <= lenLen; i++) {
                out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
            }
        }
    }

    /// @notice Encode integer in big endian binary form with no leading zeroes.
    /// @param _x The integer to encode.
    /// @return out_ RLP encoded bytes.
    function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
        bytes memory b = abi.encodePacked(_x);

        uint256 i = 0;
        for (; i < 32; i++) {
            if (b[i] != 0) {
                break;
            }
        }

        out_ = new bytes(32 - i);
        for (uint256 j = 0; j < out_.length; j++) {
            out_[j] = b[i++];
        }
    }

    /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
    /// @notice Copies a piece of memory to another location.
    /// @param _dest Destination location.
    /// @param _src  Source location.
    /// @param _len  Length of memory to copy.
    function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
        uint256 dest = _dest;
        uint256 src = _src;
        uint256 len = _len;

        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        uint256 mask;
        unchecked {
            mask = 256 ** (32 - len) - 1;
        }
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
    /// @notice Flattens a list of byte strings into one byte string.
    /// @param _list List of byte strings to flatten.
    /// @return out_ The flattened byte string.
    function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
        if (_list.length == 0) {
            return new bytes(0);
        }

        uint256 len;
        uint256 i = 0;
        for (; i < _list.length; i++) {
            len += _list[i].length;
        }

        out_ = new bytes(len);
        uint256 flattenedPtr;
        assembly {
            flattenedPtr := add(out_, 0x20)
        }

        for (i = 0; i < _list.length; i++) {
            bytes memory item = _list[i];

            uint256 listPtr;
            assembly {
                listPtr := add(item, 0x20)
            }

            _memcpy(flattenedPtr, listPtr, item.length);
            flattenedPtr += _list[i].length;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 33 of 48 : AccessControlDefaultAdminRulesUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/AccessControlDefaultAdminRules.sol)

pragma solidity ^0.8.20;

import {IAccessControlDefaultAdminRules} from "@openzeppelin/contracts/access/extensions/IAccessControlDefaultAdminRules.sol";
import {AccessControlUpgradeable} from "../AccessControlUpgradeable.sol";
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC5313} from "@openzeppelin/contracts/interfaces/IERC5313.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Extension of {AccessControl} that allows specifying special rules to manage
 * the `DEFAULT_ADMIN_ROLE` holder, which is a sensitive role with special permissions
 * over other roles that may potentially have privileged rights in the system.
 *
 * If a specific role doesn't have an admin role assigned, the holder of the
 * `DEFAULT_ADMIN_ROLE` will have the ability to grant it and revoke it.
 *
 * This contract implements the following risk mitigations on top of {AccessControl}:
 *
 * * Only one account holds the `DEFAULT_ADMIN_ROLE` since deployment until it's potentially renounced.
 * * Enforces a 2-step process to transfer the `DEFAULT_ADMIN_ROLE` to another account.
 * * Enforces a configurable delay between the two steps, with the ability to cancel before the transfer is accepted.
 * * The delay can be changed by scheduling, see {changeDefaultAdminDelay}.
 * * It is not possible to use another role to manage the `DEFAULT_ADMIN_ROLE`.
 *
 * Example usage:
 *
 * ```solidity
 * contract MyToken is AccessControlDefaultAdminRules {
 *   constructor() AccessControlDefaultAdminRules(
 *     3 days,
 *     msg.sender // Explicit initial `DEFAULT_ADMIN_ROLE` holder
 *    ) {}
 * }
 * ```
 */
abstract contract AccessControlDefaultAdminRulesUpgradeable is Initializable, IAccessControlDefaultAdminRules, IERC5313, AccessControlUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.AccessControlDefaultAdminRules
    struct AccessControlDefaultAdminRulesStorage {
        // pending admin pair read/written together frequently
        address _pendingDefaultAdmin;
        uint48 _pendingDefaultAdminSchedule; // 0 == unset

        uint48 _currentDelay;
        address _currentDefaultAdmin;

        // pending delay pair read/written together frequently
        uint48 _pendingDelay;
        uint48 _pendingDelaySchedule; // 0 == unset
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControlDefaultAdminRules")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessControlDefaultAdminRulesStorageLocation = 0xeef3dac4538c82c8ace4063ab0acd2d15cdb5883aa1dff7c2673abb3d8698400;

    function _getAccessControlDefaultAdminRulesStorage() private pure returns (AccessControlDefaultAdminRulesStorage storage $) {
        assembly {
            $.slot := AccessControlDefaultAdminRulesStorageLocation
        }
    }

    /**
     * @dev Sets the initial values for {defaultAdminDelay} and {defaultAdmin} address.
     */
    function __AccessControlDefaultAdminRules_init(uint48 initialDelay, address initialDefaultAdmin) internal onlyInitializing {
        __AccessControlDefaultAdminRules_init_unchained(initialDelay, initialDefaultAdmin);
    }

    function __AccessControlDefaultAdminRules_init_unchained(uint48 initialDelay, address initialDefaultAdmin) internal onlyInitializing {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        if (initialDefaultAdmin == address(0)) {
            revert AccessControlInvalidDefaultAdmin(address(0));
        }
        $._currentDelay = initialDelay;
        _grantRole(DEFAULT_ADMIN_ROLE, initialDefaultAdmin);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlDefaultAdminRules).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC5313-owner}.
     */
    function owner() public view virtual returns (address) {
        return defaultAdmin();
    }

    ///
    /// Override AccessControl role management
    ///

    /**
     * @dev See {AccessControl-grantRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
     */
    function grantRole(bytes32 role, address account) public virtual override(AccessControlUpgradeable, IAccessControl) {
        if (role == DEFAULT_ADMIN_ROLE) {
            revert AccessControlEnforcedDefaultAdminRules();
        }
        super.grantRole(role, account);
    }

    /**
     * @dev See {AccessControl-revokeRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
     */
    function revokeRole(bytes32 role, address account) public virtual override(AccessControlUpgradeable, IAccessControl) {
        if (role == DEFAULT_ADMIN_ROLE) {
            revert AccessControlEnforcedDefaultAdminRules();
        }
        super.revokeRole(role, account);
    }

    /**
     * @dev See {AccessControl-renounceRole}.
     *
     * For the `DEFAULT_ADMIN_ROLE`, it only allows renouncing in two steps by first calling
     * {beginDefaultAdminTransfer} to the `address(0)`, so it's required that the {pendingDefaultAdmin} schedule
     * has also passed when calling this function.
     *
     * After its execution, it will not be possible to call `onlyRole(DEFAULT_ADMIN_ROLE)` functions.
     *
     * NOTE: Renouncing `DEFAULT_ADMIN_ROLE` will leave the contract without a {defaultAdmin},
     * thereby disabling any functionality that is only available for it, and the possibility of reassigning a
     * non-administrated role.
     */
    function renounceRole(bytes32 role, address account) public virtual override(AccessControlUpgradeable, IAccessControl) {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
            (address newDefaultAdmin, uint48 schedule) = pendingDefaultAdmin();
            if (newDefaultAdmin != address(0) || !_isScheduleSet(schedule) || !_hasSchedulePassed(schedule)) {
                revert AccessControlEnforcedDefaultAdminDelay(schedule);
            }
            delete $._pendingDefaultAdminSchedule;
        }
        super.renounceRole(role, account);
    }

    /**
     * @dev See {AccessControl-_grantRole}.
     *
     * For `DEFAULT_ADMIN_ROLE`, it only allows granting if there isn't already a {defaultAdmin} or if the
     * role has been previously renounced.
     *
     * NOTE: Exposing this function through another mechanism may make the `DEFAULT_ADMIN_ROLE`
     * assignable again. Make sure to guarantee this is the expected behavior in your implementation.
     */
    function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        if (role == DEFAULT_ADMIN_ROLE) {
            if (defaultAdmin() != address(0)) {
                revert AccessControlEnforcedDefaultAdminRules();
            }
            $._currentDefaultAdmin = account;
        }
        return super._grantRole(role, account);
    }

    /**
     * @dev See {AccessControl-_revokeRole}.
     */
    function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
            delete $._currentDefaultAdmin;
        }
        return super._revokeRole(role, account);
    }

    /**
     * @dev See {AccessControl-_setRoleAdmin}. Reverts for `DEFAULT_ADMIN_ROLE`.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual override {
        if (role == DEFAULT_ADMIN_ROLE) {
            revert AccessControlEnforcedDefaultAdminRules();
        }
        super._setRoleAdmin(role, adminRole);
    }

    ///
    /// AccessControlDefaultAdminRules accessors
    ///

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function defaultAdmin() public view virtual returns (address) {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        return $._currentDefaultAdmin;
    }

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function pendingDefaultAdmin() public view virtual returns (address newAdmin, uint48 schedule) {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        return ($._pendingDefaultAdmin, $._pendingDefaultAdminSchedule);
    }

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function defaultAdminDelay() public view virtual returns (uint48) {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        uint48 schedule = $._pendingDelaySchedule;
        return (_isScheduleSet(schedule) && _hasSchedulePassed(schedule)) ? $._pendingDelay : $._currentDelay;
    }

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function pendingDefaultAdminDelay() public view virtual returns (uint48 newDelay, uint48 schedule) {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        schedule = $._pendingDelaySchedule;
        return (_isScheduleSet(schedule) && !_hasSchedulePassed(schedule)) ? ($._pendingDelay, schedule) : (0, 0);
    }

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function defaultAdminDelayIncreaseWait() public view virtual returns (uint48) {
        return 5 days;
    }

    ///
    /// AccessControlDefaultAdminRules public and internal setters for defaultAdmin/pendingDefaultAdmin
    ///

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function beginDefaultAdminTransfer(address newAdmin) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
        _beginDefaultAdminTransfer(newAdmin);
    }

    /**
     * @dev See {beginDefaultAdminTransfer}.
     *
     * Internal function without access restriction.
     */
    function _beginDefaultAdminTransfer(address newAdmin) internal virtual {
        uint48 newSchedule = SafeCast.toUint48(block.timestamp) + defaultAdminDelay();
        _setPendingDefaultAdmin(newAdmin, newSchedule);
        emit DefaultAdminTransferScheduled(newAdmin, newSchedule);
    }

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function cancelDefaultAdminTransfer() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
        _cancelDefaultAdminTransfer();
    }

    /**
     * @dev See {cancelDefaultAdminTransfer}.
     *
     * Internal function without access restriction.
     */
    function _cancelDefaultAdminTransfer() internal virtual {
        _setPendingDefaultAdmin(address(0), 0);
    }

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function acceptDefaultAdminTransfer() public virtual {
        (address newDefaultAdmin, ) = pendingDefaultAdmin();
        if (_msgSender() != newDefaultAdmin) {
            // Enforce newDefaultAdmin explicit acceptance.
            revert AccessControlInvalidDefaultAdmin(_msgSender());
        }
        _acceptDefaultAdminTransfer();
    }

    /**
     * @dev See {acceptDefaultAdminTransfer}.
     *
     * Internal function without access restriction.
     */
    function _acceptDefaultAdminTransfer() internal virtual {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        (address newAdmin, uint48 schedule) = pendingDefaultAdmin();
        if (!_isScheduleSet(schedule) || !_hasSchedulePassed(schedule)) {
            revert AccessControlEnforcedDefaultAdminDelay(schedule);
        }
        _revokeRole(DEFAULT_ADMIN_ROLE, defaultAdmin());
        _grantRole(DEFAULT_ADMIN_ROLE, newAdmin);
        delete $._pendingDefaultAdmin;
        delete $._pendingDefaultAdminSchedule;
    }

    ///
    /// AccessControlDefaultAdminRules public and internal setters for defaultAdminDelay/pendingDefaultAdminDelay
    ///

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function changeDefaultAdminDelay(uint48 newDelay) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
        _changeDefaultAdminDelay(newDelay);
    }

    /**
     * @dev See {changeDefaultAdminDelay}.
     *
     * Internal function without access restriction.
     */
    function _changeDefaultAdminDelay(uint48 newDelay) internal virtual {
        uint48 newSchedule = SafeCast.toUint48(block.timestamp) + _delayChangeWait(newDelay);
        _setPendingDelay(newDelay, newSchedule);
        emit DefaultAdminDelayChangeScheduled(newDelay, newSchedule);
    }

    /**
     * @inheritdoc IAccessControlDefaultAdminRules
     */
    function rollbackDefaultAdminDelay() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
        _rollbackDefaultAdminDelay();
    }

    /**
     * @dev See {rollbackDefaultAdminDelay}.
     *
     * Internal function without access restriction.
     */
    function _rollbackDefaultAdminDelay() internal virtual {
        _setPendingDelay(0, 0);
    }

    /**
     * @dev Returns the amount of seconds to wait after the `newDelay` will
     * become the new {defaultAdminDelay}.
     *
     * The value returned guarantees that if the delay is reduced, it will go into effect
     * after a wait that honors the previously set delay.
     *
     * See {defaultAdminDelayIncreaseWait}.
     */
    function _delayChangeWait(uint48 newDelay) internal view virtual returns (uint48) {
        uint48 currentDelay = defaultAdminDelay();

        // When increasing the delay, we schedule the delay change to occur after a period of "new delay" has passed, up
        // to a maximum given by defaultAdminDelayIncreaseWait, by default 5 days. For example, if increasing from 1 day
        // to 3 days, the new delay will come into effect after 3 days. If increasing from 1 day to 10 days, the new
        // delay will come into effect after 5 days. The 5 day wait period is intended to be able to fix an error like
        // using milliseconds instead of seconds.
        //
        // When decreasing the delay, we wait the difference between "current delay" and "new delay". This guarantees
        // that an admin transfer cannot be made faster than "current delay" at the time the delay change is scheduled.
        // For example, if decreasing from 10 days to 3 days, the new delay will come into effect after 7 days.
        return
            newDelay > currentDelay
                ? uint48(Math.min(newDelay, defaultAdminDelayIncreaseWait())) // no need to safecast, both inputs are uint48
                : currentDelay - newDelay;
    }

    ///
    /// Private setters
    ///

    /**
     * @dev Setter of the tuple for pending admin and its schedule.
     *
     * May emit a DefaultAdminTransferCanceled event.
     */
    function _setPendingDefaultAdmin(address newAdmin, uint48 newSchedule) private {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        (, uint48 oldSchedule) = pendingDefaultAdmin();

        $._pendingDefaultAdmin = newAdmin;
        $._pendingDefaultAdminSchedule = newSchedule;

        // An `oldSchedule` from `pendingDefaultAdmin()` is only set if it hasn't been accepted.
        if (_isScheduleSet(oldSchedule)) {
            // Emit for implicit cancellations when another default admin was scheduled.
            emit DefaultAdminTransferCanceled();
        }
    }

    /**
     * @dev Setter of the tuple for pending delay and its schedule.
     *
     * May emit a DefaultAdminDelayChangeCanceled event.
     */
    function _setPendingDelay(uint48 newDelay, uint48 newSchedule) private {
        AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
        uint48 oldSchedule = $._pendingDelaySchedule;

        if (_isScheduleSet(oldSchedule)) {
            if (_hasSchedulePassed(oldSchedule)) {
                // Materialize a virtual delay
                $._currentDelay = $._pendingDelay;
            } else {
                // Emit for implicit cancellations when another delay was scheduled.
                emit DefaultAdminDelayChangeCanceled();
            }
        }

        $._pendingDelay = newDelay;
        $._pendingDelaySchedule = newSchedule;
    }

    ///
    /// Private helpers
    ///

    /**
     * @dev Defines if an `schedule` is considered set. For consistency purposes.
     */
    function _isScheduleSet(uint48 schedule) private pure returns (bool) {
        return schedule != 0;
    }

    /**
     * @dev Defines if an `schedule` is considered passed. For consistency purposes.
     */
    function _hasSchedulePassed(uint48 schedule) private view returns (bool) {
        return schedule < block.timestamp;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Storage
/// @notice Storage handles reading and writing to arbitary storage locations
library Storage {
    /// @notice Returns an address stored in an arbitrary storage slot.
    ///         These storage slots decouple the storage layout from
    ///         solc's automation.
    /// @param _slot The storage slot to retrieve the address from.
    function getAddress(bytes32 _slot) internal view returns (address addr_) {
        assembly {
            addr_ := sload(_slot)
        }
    }

    /// @notice Stores an address in an arbitrary storage slot, `_slot`.
    /// @param _slot The storage slot to store the address in.
    /// @param _address The protocol version to store
    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
    ///      in arbitrary storage slots.
    function setAddress(bytes32 _slot, address _address) internal {
        assembly {
            sstore(_slot, _address)
        }
    }

    /// @notice Returns a uint256 stored in an arbitrary storage slot.
    ///         These storage slots decouple the storage layout from
    ///         solc's automation.
    /// @param _slot The storage slot to retrieve the address from.
    function getUint(bytes32 _slot) internal view returns (uint256 value_) {
        assembly {
            value_ := sload(_slot)
        }
    }

    /// @notice Stores a value in an arbitrary storage slot, `_slot`.
    /// @param _slot The storage slot to store the address in.
    /// @param _value The protocol version to store
    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
    ///      in arbitrary storage slots.
    function setUint(bytes32 _slot, uint256 _value) internal {
        assembly {
            sstore(_slot, _value)
        }
    }

    /// @notice Returns a bytes32 stored in an arbitrary storage slot.
    ///         These storage slots decouple the storage layout from
    ///         solc's automation.
    /// @param _slot The storage slot to retrieve the address from.
    function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
        assembly {
            value_ := sload(_slot)
        }
    }

    /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
    /// @param _slot The storage slot to store the address in.
    /// @param _value The bytes32 value to store.
    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
    ///      in arbitrary storage slots.
    function setBytes32(bytes32 _slot, bytes32 _value) internal {
        assembly {
            sstore(_slot, _value)
        }
    }

    /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
    /// @param _slot The storage slot to store the bool in.
    /// @param _value The bool value to store
    /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
    ///      in arbitrary storage slots.
    function setBool(bytes32 _slot, bool _value) internal {
        assembly {
            sstore(_slot, _value)
        }
    }

    /// @notice Returns a bool stored in an arbitrary storage slot.
    /// @param _slot The storage slot to retrieve the bool from.
    function getBool(bytes32 _slot) internal view returns (bool value_) {
        assembly {
            value_ := sload(_slot)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
    /// @notice Burns a given amount of gas.
    /// @param _amount Amount of gas to burn.
    function gas(uint256 _amount) internal view {
        uint256 i = 0;
        uint256 initialGas = gasleft();
        while (initialGas - gasleft() < _amount) {
            ++i;
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";

/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
    /// @notice Clamps a value between a minimum and maximum.
    /// @param _value The value to clamp.
    /// @param _min   The minimum value.
    /// @param _max   The maximum value.
    /// @return The clamped value.
    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
        return SignedMath.min(SignedMath.max(_value, _min), _max);
    }

    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
    ///         Returns the result of: c * (1 - 1/d)^exp.
    /// @param _coefficient Coefficient of the function.
    /// @param _denominator Fractional denominator.
    /// @param _exponent    Power function exponent.
    /// @return Result of c * (1 - 1/d)^exp.
    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/IAccessControlDefaultAdminRules.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "../IAccessControl.sol";

/**
 * @dev External interface of AccessControlDefaultAdminRules declared to support ERC165 detection.
 */
interface IAccessControlDefaultAdminRules is IAccessControl {
    /**
     * @dev The new default admin is not a valid default admin.
     */
    error AccessControlInvalidDefaultAdmin(address defaultAdmin);

    /**
     * @dev At least one of the following rules was violated:
     *
     * - The `DEFAULT_ADMIN_ROLE` must only be managed by itself.
     * - The `DEFAULT_ADMIN_ROLE` must only be held by one account at the time.
     * - Any `DEFAULT_ADMIN_ROLE` transfer must be in two delayed steps.
     */
    error AccessControlEnforcedDefaultAdminRules();

    /**
     * @dev The delay for transferring the default admin delay is enforced and
     * the operation must wait until `schedule`.
     *
     * NOTE: `schedule` can be 0 indicating there's no transfer scheduled.
     */
    error AccessControlEnforcedDefaultAdminDelay(uint48 schedule);

    /**
     * @dev Emitted when a {defaultAdmin} transfer is started, setting `newAdmin` as the next
     * address to become the {defaultAdmin} by calling {acceptDefaultAdminTransfer} only after `acceptSchedule`
     * passes.
     */
    event DefaultAdminTransferScheduled(address indexed newAdmin, uint48 acceptSchedule);

    /**
     * @dev Emitted when a {pendingDefaultAdmin} is reset if it was never accepted, regardless of its schedule.
     */
    event DefaultAdminTransferCanceled();

    /**
     * @dev Emitted when a {defaultAdminDelay} change is started, setting `newDelay` as the next
     * delay to be applied between default admin transfer after `effectSchedule` has passed.
     */
    event DefaultAdminDelayChangeScheduled(uint48 newDelay, uint48 effectSchedule);

    /**
     * @dev Emitted when a {pendingDefaultAdminDelay} is reset if its schedule didn't pass.
     */
    event DefaultAdminDelayChangeCanceled();

    /**
     * @dev Returns the address of the current `DEFAULT_ADMIN_ROLE` holder.
     */
    function defaultAdmin() external view returns (address);

    /**
     * @dev Returns a tuple of a `newAdmin` and an accept schedule.
     *
     * After the `schedule` passes, the `newAdmin` will be able to accept the {defaultAdmin} role
     * by calling {acceptDefaultAdminTransfer}, completing the role transfer.
     *
     * A zero value only in `acceptSchedule` indicates no pending admin transfer.
     *
     * NOTE: A zero address `newAdmin` means that {defaultAdmin} is being renounced.
     */
    function pendingDefaultAdmin() external view returns (address newAdmin, uint48 acceptSchedule);

    /**
     * @dev Returns the delay required to schedule the acceptance of a {defaultAdmin} transfer started.
     *
     * This delay will be added to the current timestamp when calling {beginDefaultAdminTransfer} to set
     * the acceptance schedule.
     *
     * NOTE: If a delay change has been scheduled, it will take effect as soon as the schedule passes, making this
     * function returns the new delay. See {changeDefaultAdminDelay}.
     */
    function defaultAdminDelay() external view returns (uint48);

    /**
     * @dev Returns a tuple of `newDelay` and an effect schedule.
     *
     * After the `schedule` passes, the `newDelay` will get into effect immediately for every
     * new {defaultAdmin} transfer started with {beginDefaultAdminTransfer}.
     *
     * A zero value only in `effectSchedule` indicates no pending delay change.
     *
     * NOTE: A zero value only for `newDelay` means that the next {defaultAdminDelay}
     * will be zero after the effect schedule.
     */
    function pendingDefaultAdminDelay() external view returns (uint48 newDelay, uint48 effectSchedule);

    /**
     * @dev Starts a {defaultAdmin} transfer by setting a {pendingDefaultAdmin} scheduled for acceptance
     * after the current timestamp plus a {defaultAdminDelay}.
     *
     * Requirements:
     *
     * - Only can be called by the current {defaultAdmin}.
     *
     * Emits a DefaultAdminRoleChangeStarted event.
     */
    function beginDefaultAdminTransfer(address newAdmin) external;

    /**
     * @dev Cancels a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
     *
     * A {pendingDefaultAdmin} not yet accepted can also be cancelled with this function.
     *
     * Requirements:
     *
     * - Only can be called by the current {defaultAdmin}.
     *
     * May emit a DefaultAdminTransferCanceled event.
     */
    function cancelDefaultAdminTransfer() external;

    /**
     * @dev Completes a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
     *
     * After calling the function:
     *
     * - `DEFAULT_ADMIN_ROLE` should be granted to the caller.
     * - `DEFAULT_ADMIN_ROLE` should be revoked from the previous holder.
     * - {pendingDefaultAdmin} should be reset to zero values.
     *
     * Requirements:
     *
     * - Only can be called by the {pendingDefaultAdmin}'s `newAdmin`.
     * - The {pendingDefaultAdmin}'s `acceptSchedule` should've passed.
     */
    function acceptDefaultAdminTransfer() external;

    /**
     * @dev Initiates a {defaultAdminDelay} update by setting a {pendingDefaultAdminDelay} scheduled for getting
     * into effect after the current timestamp plus a {defaultAdminDelay}.
     *
     * This function guarantees that any call to {beginDefaultAdminTransfer} done between the timestamp this
     * method is called and the {pendingDefaultAdminDelay} effect schedule will use the current {defaultAdminDelay}
     * set before calling.
     *
     * The {pendingDefaultAdminDelay}'s effect schedule is defined in a way that waiting until the schedule and then
     * calling {beginDefaultAdminTransfer} with the new delay will take at least the same as another {defaultAdmin}
     * complete transfer (including acceptance).
     *
     * The schedule is designed for two scenarios:
     *
     * - When the delay is changed for a larger one the schedule is `block.timestamp + newDelay` capped by
     * {defaultAdminDelayIncreaseWait}.
     * - When the delay is changed for a shorter one, the schedule is `block.timestamp + (current delay - new delay)`.
     *
     * A {pendingDefaultAdminDelay} that never got into effect will be canceled in favor of a new scheduled change.
     *
     * Requirements:
     *
     * - Only can be called by the current {defaultAdmin}.
     *
     * Emits a DefaultAdminDelayChangeScheduled event and may emit a DefaultAdminDelayChangeCanceled event.
     */
    function changeDefaultAdminDelay(uint48 newDelay) external;

    /**
     * @dev Cancels a scheduled {defaultAdminDelay} change.
     *
     * Requirements:
     *
     * - Only can be called by the current {defaultAdmin}.
     *
     * May emit a DefaultAdminDelayChangeCanceled event.
     */
    function rollbackDefaultAdminDelay() external;

    /**
     * @dev Maximum time in seconds for an increase to {defaultAdminDelay} (that is scheduled using {changeDefaultAdminDelay})
     * to take effect. Default to 5 days.
     *
     * When the {defaultAdminDelay} is scheduled to be increased, it goes into effect after the new delay has passed with
     * the purpose of giving enough time for reverting any accidental change (i.e. using milliseconds instead of seconds)
     * that may lock the contract. However, to avoid excessive schedules, the wait is capped by this function and it can
     * be overrode for a custom {defaultAdminDelay} increase scheduling.
     *
     * IMPORTANT: Make sure to add a reasonable amount of time while overriding this value, otherwise,
     * there's a risk of setting a high new delay that goes into effect almost immediately without the
     * possibility of human intervention in the case of an input error (eg. set milliseconds instead of seconds).
     */
    function defaultAdminDelayIncreaseWait() external view returns (uint48);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;


    /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
    struct AccessControlStorage {
        mapping(bytes32 role => RoleData) _roles;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;

    function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
        assembly {
            $.slot := AccessControlStorageLocation
        }
    }

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    function __AccessControl_init() internal onlyInitializing {
    }

    function __AccessControl_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        AccessControlStorage storage $ = _getAccessControlStorage();
        bytes32 previousAdminRole = getRoleAdmin(role);
        $._roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (!hasRole(role, account)) {
            $._roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (hasRole(role, account)) {
            $._roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

File 43 of 48 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

File 44 of 48 : IERC5313.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5313.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface for the Light Contract Ownership Standard.
 *
 * A standardized minimal interface required to identify an account that controls a contract
 */
interface IERC5313 {
    /**
     * @dev Gets the address of the owner.
     */
    function owner() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
    }

    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return 0;

            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5**18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
        }
    }

    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            require(x > 0, "UNDEFINED");

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            int256 k = int256(log2(uint256(x))) - 96;
            x <<= uint256(159 - k);
            x = int256(uint256(x) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function log2(uint256 x) internal pure returns (uint256 r) {
        require(x > 0, "UNDEFINED");

        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            r := or(r, shl(2, lt(0xf, shr(r, x))))
            r := or(r, shl(1, lt(0x3, shr(r, x))))
            r := or(r, lt(0x1, shr(r, x)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165Upgradeable is Initializable, IERC165 {
    function __ERC165_init() internal onlyInitializing {
    }

    function __ERC165_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@rari-capital/solmate/=lib/solmate/",
    "@cwia/=lib/clones-with-immutable-args/src/",
    "forge-std/=lib/forge-std/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "safe-contracts/=lib/safe-contracts/contracts/",
    "solady/=lib/solady/src/",
    "clones-with-immutable-args/=lib/clones-with-immutable-args/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "safe-smart-account/=lib/safe-smart-account/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200,
    "details": {
      "yul": false
    }
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"address","name":"remoteToken","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC721BridgeFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"address","name":"remoteToken","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC721BridgeInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"MESSENGER","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OTHER_BRIDGE","outputs":[{"internalType":"contract StandardBridge","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeERC721To","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"deposits","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"finalizeBridgeERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract CrossDomainMessenger","name":"_messenger","type":"address"},{"internalType":"contract SuperchainConfig","name":"_superchainConfig","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"messenger","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"otherBridge","outputs":[{"internalType":"contract StandardBridge","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"superchainConfig","outputs":[{"internalType":"contract SuperchainConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]

60806040523480156200001157600080fd5b506200001f60008062000025565b62000239565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000810460ff1615906001600160401b0316600081158015620000705750825b90506000826001600160401b031660011480156200008d5750303b155b9050811580156200009c575080155b15620000bb5760405163f92ee8a960e01b815260040160405180910390fd5b84546001600160401b03191660011785558315620000ea57845460ff60401b1916680100000000000000001785555b603180546001600160a01b0319166001600160a01b03881617905562000125877342000000000000000000000000000000000000146200017c565b83156200017357845460ff60401b191685556040517fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906200016a9060019062000229565b60405180910390a15b50505050505050565b62000186620001b4565b600080546001600160a01b039384166001600160a01b03199182161790915560018054929093169116179055565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005468010000000000000000900460ff166200020357604051631afcd79f60e31b815260040160405180910390fd5b565b60006001600160401b0382165b92915050565b620002238162000205565b82525050565b6020810162000212828462000218565b61112a80620002496000396000f3fe608060405234801561001057600080fd5b50600436106100b45760003560e01c80635d93a3fc116100715780635d93a3fc14610163578063761f4493146101975780637f46ddb2146101aa578063927ede2d146101bb578063aa557452146101cc578063c89701a2146101df57600080fd5b806335e80ab3146100b95780633687011a146100e25780633cb747bf146100f7578063485cc9551461010a57806354fd4d501461011d5780635c975abb1461014e575b600080fd5b6031546100cc906001600160a01b031681565b6040516100d9919061093d565b60405180910390f35b6100f56100f03660046109f8565b6101f2565b005b6000546100cc906001600160a01b031681565b6100f5610118366004610aad565b610237565b610141604051806040016040528060058152602001640322e322e360dc1b81525081565b6040516100d99190610b42565b610156610370565b6040516100d99190610b62565b610156610171366004610b70565b603060209081526000938452604080852082529284528284209052825290205460ff1681565b6100f56101a5366004610bc0565b6103e3565b6001546001600160a01b03166100cc565b6000546001600160a01b03166100cc565b6100f56101da366004610c6b565b610624565b6001546100cc906001600160a01b031681565b6101fa61065a565b61021f5760405162461bcd60e51b815260040161021690610d26565b60405180910390fd5b61022f8686333388888888610697565b505050505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff1660008115801561027d5750825b905060008267ffffffffffffffff16600114801561029a5750303b155b9050811580156102a8575080155b156102c65760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff1916600117855583156102f057845460ff60401b1916600160401b1785555b603180546001600160a01b0319166001600160a01b03881617905561031c876014602160991b01610876565b831561036757845460ff60401b191685556040517fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29061035e90600190610d52565b60405180910390a15b50505050505050565b60315460408051635c975abb60e01b815290516000926001600160a01b031691635c975abb9160048083019260209291908290030181865afa1580156103ba573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103de9190610d73565b905090565b6000546001600160a01b031633148015610478575060015460005460408051636e296e4560e01b815290516001600160a01b039384169390921691636e296e45916004808201926020929091908290030181865afa158015610449573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061046d9190610da7565b6001600160a01b0316145b6104945760405162461bcd60e51b815260040161021690610e22565b61049c610370565b156104b95760405162461bcd60e51b815260040161021690610e32565b306001600160a01b038816036104e15760405162461bcd60e51b815260040161021690610ead565b6001600160a01b038088166000908152603060209081526040808320938a1683529281528282208683529052205460ff1615156001146105335760405162461bcd60e51b815260040161021690610f17565b6001600160a01b038088166000818152603060209081526040808320948b1683529381528382208783529052829020805460ff191690559051632142170760e11b81526342842e0e9061058e90309088908890600401610f36565b600060405180830381600087803b1580156105a857600080fd5b505af11580156105bc573d6000803e3d6000fd5b50505050846001600160a01b0316866001600160a01b0316886001600160a01b03167f1f39bf6707b5d608453e0ae4c067b562bcc4c85c0f562ef5d2c774d2e7f131ac878787876040516106139493929190610f8d565b60405180910390a450505050505050565b6001600160a01b03851661064a5760405162461bcd60e51b815260040161021690611012565b6103678787338888888888610697565b60003233036106695750600190565b333b60170361069157604051602081016040526020600082333c5160e81c62ef010014905090565b50600090565b6001600160a01b0387166106bd5760405162461bcd60e51b815260040161021690611070565b600063761f449360e01b888a89898988886040516024016106e49796959493929190611080565b60408051601f19818403018152918152602080830180516001600160e01b03166001600160e01b0319909516949094179093526001600160a01b03808d16600081815260308652838120928e1681529185528282208a8352909452819020805460ff19166001179055516323b872dd60e01b81529092506323b872dd90610773908a9030908a90600401610f36565b600060405180830381600087803b15801561078d57600080fd5b505af11580156107a1573d6000803e3d6000fd5b5050600054600154604051633dbb202b60e01b81526001600160a01b039283169450633dbb202b93506107de9290911690859089906004016110ee565b600060405180830381600087803b1580156107f857600080fd5b505af115801561080c573d6000803e3d6000fd5b50505050866001600160a01b0316886001600160a01b03168a6001600160a01b03167fb7460e2a880f256ebef3406116ff3eee0cee51ebccdc2a40698f87ebb2e9c1a5898988886040516108639493929190610f8d565b60405180910390a4505050505050505050565b61087e6108ac565b600080546001600160a01b039384166001600160a01b03199182161790915560018054929093169116179055565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166108f557604051631afcd79f60e31b815260040160405180910390fd5b565b6001600160a01b031690565b92915050565b60006109038260006109036001600160a01b0383166108f7565b600061090382610909565b61093781610923565b82525050565b60208101610903828461092e565b60006001600160a01b038216610903565b6109658161094b565b811461097057600080fd5b50565b80356109038161095c565b80610965565b80356109038161097e565b63ffffffff8116610965565b80356109038161098f565b60008083601f8401126109bb576109bb600080fd5b50813567ffffffffffffffff8111156109d6576109d6600080fd5b6020830191508360018202830111156109f1576109f1600080fd5b9250929050565b60008060008060008060a08789031215610a1457610a14600080fd5b6000610a208989610973565b9650506020610a3189828a01610973565b9550506040610a4289828a01610984565b9450506060610a5389828a0161099b565b935050608087013567ffffffffffffffff811115610a7357610a73600080fd5b610a7f89828a016109a6565b92509250509295509295509295565b60006109038261094b565b61096581610a8e565b803561090381610a99565b60008060408385031215610ac357610ac3600080fd5b6000610acf8585610aa2565b9250506020610ae085828601610aa2565b9150509250929050565b60005b83811015610b05578181015183820152602001610aed565b50506000910152565b6000610b18825190565b808452602084019350610b2f818560208601610aea565b601f19601f8201165b9093019392505050565b60208082528101610b538184610b0e565b9392505050565b801515610937565b602081016109038284610b5a565b600080600060608486031215610b8857610b88600080fd5b6000610b948686610973565b9350506020610ba586828701610973565b9250506040610bb686828701610984565b9150509250925092565b600080600080600080600060c0888a031215610bde57610bde600080fd5b6000610bea8a8a610973565b9750506020610bfb8a828b01610973565b9650506040610c0c8a828b01610973565b9550506060610c1d8a828b01610973565b9450506080610c2e8a828b01610984565b93505060a088013567ffffffffffffffff811115610c4e57610c4e600080fd5b610c5a8a828b016109a6565b925092505092959891949750929550565b600080600080600080600060c0888a031215610c8957610c89600080fd5b6000610c958a8a610973565b9750506020610ca68a828b01610973565b9650506040610cb78a828b01610973565b9550506060610cc88a828b01610984565b9450506080610c2e8a828b0161099b565b602d81526000602082017f4552433732314272696467653a206163636f756e74206973206e6f742065787481526c195c9b985b1b1e481bdddb9959609a1b602082015291505b5060400190565b6020808252810161090381610cd9565b67ffffffffffffffff1690565b61093781600061090382610d36565b602081016109038284610d43565b801515610965565b805161090381610d60565b600060208284031215610d8857610d88600080fd5b6000610d948484610d68565b949350505050565b80516109038161095c565b600060208284031215610dbc57610dbc600080fd5b6000610d948484610d9c565b603f81526000602082017f4552433732314272696467653a2066756e6374696f6e2063616e206f6e6c792081527f62652063616c6c65642066726f6d20746865206f74686572206272696467650060208201529150610d1f565b6020808252810161090381610dc8565b60208082528101610903816016815275130c515490cdcc8c509c9a5919d94e881c185d5cd95960521b602082015260400190565b602a81526000602082017f4c314552433732314272696467653a206c6f63616c20746f6b656e2063616e6e81526937ba1031329039b2b63360b11b60208201529150610d1f565b6020808252810161090381610e66565b603981526000602082017f4c314552433732314272696467653a20546f6b656e204944206973206e6f742081527f657363726f77656420696e20746865204c31204272696467650000000000000060208201529150610d1f565b6020808252810161090381610ebd565b6109378161094b565b80610937565b60608101610f448286610f27565b610f516020830185610f27565b610d946040830184610f30565b82818337506000910152565b8183526000602084019350610f80838584610f5e565b601f19601f840116610b38565b60608101610f9b8287610f27565b610fa86020830186610f30565b8181036040830152610fbb818486610f6a565b9695505050505050565b603081526000602082017f4552433732314272696467653a206e667420726563697069656e742063616e6e81526f6f74206265206164647265737328302960801b60208201529150610d1f565b6020808252810161090381610fc5565b603181526000602082017f4c314552433732314272696467653a2072656d6f746520746f6b656e2063616e8152706e6f74206265206164647265737328302960781b60208201529150610d1f565b6020808252810161090381611022565b60c0810161108e828a610f27565b61109b6020830189610f27565b6110a86040830188610f27565b6110b56060830187610f27565b6110c26080830186610f30565b81810360a08301526110d5818486610f6a565b9998505050505050505050565b63ffffffff8116610937565b606081016110fc8286610f27565b818103602083015261110e8185610b0e565b9050610d9460408301846110e256fea164736f6c6343000814000a

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100b45760003560e01c80635d93a3fc116100715780635d93a3fc14610163578063761f4493146101975780637f46ddb2146101aa578063927ede2d146101bb578063aa557452146101cc578063c89701a2146101df57600080fd5b806335e80ab3146100b95780633687011a146100e25780633cb747bf146100f7578063485cc9551461010a57806354fd4d501461011d5780635c975abb1461014e575b600080fd5b6031546100cc906001600160a01b031681565b6040516100d9919061093d565b60405180910390f35b6100f56100f03660046109f8565b6101f2565b005b6000546100cc906001600160a01b031681565b6100f5610118366004610aad565b610237565b610141604051806040016040528060058152602001640322e322e360dc1b81525081565b6040516100d99190610b42565b610156610370565b6040516100d99190610b62565b610156610171366004610b70565b603060209081526000938452604080852082529284528284209052825290205460ff1681565b6100f56101a5366004610bc0565b6103e3565b6001546001600160a01b03166100cc565b6000546001600160a01b03166100cc565b6100f56101da366004610c6b565b610624565b6001546100cc906001600160a01b031681565b6101fa61065a565b61021f5760405162461bcd60e51b815260040161021690610d26565b60405180910390fd5b61022f8686333388888888610697565b505050505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff1660008115801561027d5750825b905060008267ffffffffffffffff16600114801561029a5750303b155b9050811580156102a8575080155b156102c65760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff1916600117855583156102f057845460ff60401b1916600160401b1785555b603180546001600160a01b0319166001600160a01b03881617905561031c876014602160991b01610876565b831561036757845460ff60401b191685556040517fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29061035e90600190610d52565b60405180910390a15b50505050505050565b60315460408051635c975abb60e01b815290516000926001600160a01b031691635c975abb9160048083019260209291908290030181865afa1580156103ba573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103de9190610d73565b905090565b6000546001600160a01b031633148015610478575060015460005460408051636e296e4560e01b815290516001600160a01b039384169390921691636e296e45916004808201926020929091908290030181865afa158015610449573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061046d9190610da7565b6001600160a01b0316145b6104945760405162461bcd60e51b815260040161021690610e22565b61049c610370565b156104b95760405162461bcd60e51b815260040161021690610e32565b306001600160a01b038816036104e15760405162461bcd60e51b815260040161021690610ead565b6001600160a01b038088166000908152603060209081526040808320938a1683529281528282208683529052205460ff1615156001146105335760405162461bcd60e51b815260040161021690610f17565b6001600160a01b038088166000818152603060209081526040808320948b1683529381528382208783529052829020805460ff191690559051632142170760e11b81526342842e0e9061058e90309088908890600401610f36565b600060405180830381600087803b1580156105a857600080fd5b505af11580156105bc573d6000803e3d6000fd5b50505050846001600160a01b0316866001600160a01b0316886001600160a01b03167f1f39bf6707b5d608453e0ae4c067b562bcc4c85c0f562ef5d2c774d2e7f131ac878787876040516106139493929190610f8d565b60405180910390a450505050505050565b6001600160a01b03851661064a5760405162461bcd60e51b815260040161021690611012565b6103678787338888888888610697565b60003233036106695750600190565b333b60170361069157604051602081016040526020600082333c5160e81c62ef010014905090565b50600090565b6001600160a01b0387166106bd5760405162461bcd60e51b815260040161021690611070565b600063761f449360e01b888a89898988886040516024016106e49796959493929190611080565b60408051601f19818403018152918152602080830180516001600160e01b03166001600160e01b0319909516949094179093526001600160a01b03808d16600081815260308652838120928e1681529185528282208a8352909452819020805460ff19166001179055516323b872dd60e01b81529092506323b872dd90610773908a9030908a90600401610f36565b600060405180830381600087803b15801561078d57600080fd5b505af11580156107a1573d6000803e3d6000fd5b5050600054600154604051633dbb202b60e01b81526001600160a01b039283169450633dbb202b93506107de9290911690859089906004016110ee565b600060405180830381600087803b1580156107f857600080fd5b505af115801561080c573d6000803e3d6000fd5b50505050866001600160a01b0316886001600160a01b03168a6001600160a01b03167fb7460e2a880f256ebef3406116ff3eee0cee51ebccdc2a40698f87ebb2e9c1a5898988886040516108639493929190610f8d565b60405180910390a4505050505050505050565b61087e6108ac565b600080546001600160a01b039384166001600160a01b03199182161790915560018054929093169116179055565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166108f557604051631afcd79f60e31b815260040160405180910390fd5b565b6001600160a01b031690565b92915050565b60006109038260006109036001600160a01b0383166108f7565b600061090382610909565b61093781610923565b82525050565b60208101610903828461092e565b60006001600160a01b038216610903565b6109658161094b565b811461097057600080fd5b50565b80356109038161095c565b80610965565b80356109038161097e565b63ffffffff8116610965565b80356109038161098f565b60008083601f8401126109bb576109bb600080fd5b50813567ffffffffffffffff8111156109d6576109d6600080fd5b6020830191508360018202830111156109f1576109f1600080fd5b9250929050565b60008060008060008060a08789031215610a1457610a14600080fd5b6000610a208989610973565b9650506020610a3189828a01610973565b9550506040610a4289828a01610984565b9450506060610a5389828a0161099b565b935050608087013567ffffffffffffffff811115610a7357610a73600080fd5b610a7f89828a016109a6565b92509250509295509295509295565b60006109038261094b565b61096581610a8e565b803561090381610a99565b60008060408385031215610ac357610ac3600080fd5b6000610acf8585610aa2565b9250506020610ae085828601610aa2565b9150509250929050565b60005b83811015610b05578181015183820152602001610aed565b50506000910152565b6000610b18825190565b808452602084019350610b2f818560208601610aea565b601f19601f8201165b9093019392505050565b60208082528101610b538184610b0e565b9392505050565b801515610937565b602081016109038284610b5a565b600080600060608486031215610b8857610b88600080fd5b6000610b948686610973565b9350506020610ba586828701610973565b9250506040610bb686828701610984565b9150509250925092565b600080600080600080600060c0888a031215610bde57610bde600080fd5b6000610bea8a8a610973565b9750506020610bfb8a828b01610973565b9650506040610c0c8a828b01610973565b9550506060610c1d8a828b01610973565b9450506080610c2e8a828b01610984565b93505060a088013567ffffffffffffffff811115610c4e57610c4e600080fd5b610c5a8a828b016109a6565b925092505092959891949750929550565b600080600080600080600060c0888a031215610c8957610c89600080fd5b6000610c958a8a610973565b9750506020610ca68a828b01610973565b9650506040610cb78a828b01610973565b9550506060610cc88a828b01610984565b9450506080610c2e8a828b0161099b565b602d81526000602082017f4552433732314272696467653a206163636f756e74206973206e6f742065787481526c195c9b985b1b1e481bdddb9959609a1b602082015291505b5060400190565b6020808252810161090381610cd9565b67ffffffffffffffff1690565b61093781600061090382610d36565b602081016109038284610d43565b801515610965565b805161090381610d60565b600060208284031215610d8857610d88600080fd5b6000610d948484610d68565b949350505050565b80516109038161095c565b600060208284031215610dbc57610dbc600080fd5b6000610d948484610d9c565b603f81526000602082017f4552433732314272696467653a2066756e6374696f6e2063616e206f6e6c792081527f62652063616c6c65642066726f6d20746865206f74686572206272696467650060208201529150610d1f565b6020808252810161090381610dc8565b60208082528101610903816016815275130c515490cdcc8c509c9a5919d94e881c185d5cd95960521b602082015260400190565b602a81526000602082017f4c314552433732314272696467653a206c6f63616c20746f6b656e2063616e6e81526937ba1031329039b2b63360b11b60208201529150610d1f565b6020808252810161090381610e66565b603981526000602082017f4c314552433732314272696467653a20546f6b656e204944206973206e6f742081527f657363726f77656420696e20746865204c31204272696467650000000000000060208201529150610d1f565b6020808252810161090381610ebd565b6109378161094b565b80610937565b60608101610f448286610f27565b610f516020830185610f27565b610d946040830184610f30565b82818337506000910152565b8183526000602084019350610f80838584610f5e565b601f19601f840116610b38565b60608101610f9b8287610f27565b610fa86020830186610f30565b8181036040830152610fbb818486610f6a565b9695505050505050565b603081526000602082017f4552433732314272696467653a206e667420726563697069656e742063616e6e81526f6f74206265206164647265737328302960801b60208201529150610d1f565b6020808252810161090381610fc5565b603181526000602082017f4c314552433732314272696467653a2072656d6f746520746f6b656e2063616e8152706e6f74206265206164647265737328302960781b60208201529150610d1f565b6020808252810161090381611022565b60c0810161108e828a610f27565b61109b6020830189610f27565b6110a86040830188610f27565b6110b56060830187610f27565b6110c26080830186610f30565b81810360a08301526110d5818486610f6a565b9998505050505050505050565b63ffffffff8116610937565b606081016110fc8286610f27565b818103602083015261110e8185610b0e565b9050610d9460408301846110e256fea164736f6c6343000814000a

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.