Feature Tip: Add private address tag to any address under My Name Tag !
More Info
Private Name Tags
ContractCreator
Sponsored
Latest 1 internal transaction
Parent Txn Hash | Block | From | To | Value | ||
---|---|---|---|---|---|---|
14576011 | 526 days 21 hrs ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0x1e086b7d6e6ab3e537f921d60ca8e318fe8b32d7
Contract Name:
MultiRewards
Compiler Version
v0.8.10+commit.fc410830
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.10; import {MathUpgradeable as Math} from "MathUpgradeable.sol"; import {OwnableUpgradeable as Ownable} from "OwnableUpgradeable.sol"; import {IERC20Upgradeable as IERC20} from "IERC20Upgradeable.sol"; import {PausableUpgradeable as Pausable} from "PausableUpgradeable.sol"; import {SafeERC20Upgradeable as SafeERC20} from "SafeERC20Upgradeable.sol"; import {ReentrancyGuardUpgradeable as ReentrancyGuard} from "ReentrancyGuardUpgradeable.sol"; contract MultiRewards is Ownable, ReentrancyGuard, Pausable { using SafeERC20 for IERC20; /* ========== STATE VARIABLES ========== */ struct Reward { bool shouldTransfer; address rewardsDistributor; uint256 rewardsDuration; uint256 periodFinish; uint256 rewardRate; uint256 lastUpdateTime; uint256 rewardPerTokenStored; } IERC20 public stakingToken; mapping(address => Reward) public rewardData; address[] public rewardTokens; // user -> reward token -> amount mapping(address => mapping(address => uint256)) public userRewardPerTokenPaid; mapping(address => mapping(address => uint256)) public rewards; uint256 private _totalSupply; mapping(address => uint256) private _balances; /* ========== INITIALIZE ========== */ function initialize(address _owner, address _stakingToken) public initializer { stakingToken = IERC20(_stakingToken); // Init base contracts. __Ownable_init(); __Pausable_init(); __ReentrancyGuard_init(); // Transfer ownership. transferOwnership(_owner); } /* ========== ADD NEW REWARD TOKEN ========== */ function addReward( address _rewardsToken, address _rewardsDistributor, uint256 _rewardsDuration, bool _shouldTransfer // wheter to transfer the rewards from the rewards distributor upon notifyReward call or not ) public onlyOwner { require(rewardData[_rewardsToken].rewardsDuration == 0); rewardTokens.push(_rewardsToken); rewardData[_rewardsToken].rewardsDistributor = _rewardsDistributor; rewardData[_rewardsToken].rewardsDuration = _rewardsDuration; rewardData[_rewardsToken].shouldTransfer = _shouldTransfer; } /* ========== VIEWS ========== */ function totalSupply() external view returns (uint256) { return _totalSupply; } function balanceOf(address account) external view returns (uint256) { return _balances[account]; } function lastTimeRewardApplicable(address _rewardsToken) public view returns (uint256) { return Math.min(block.timestamp, rewardData[_rewardsToken].periodFinish); } function rewardPerToken(address _rewardsToken) public view returns (uint256) { if (_totalSupply == 0) { return rewardData[_rewardsToken].rewardPerTokenStored; } return rewardData[_rewardsToken].rewardPerTokenStored + ( (lastTimeRewardApplicable(_rewardsToken) - rewardData[_rewardsToken].lastUpdateTime) * rewardData[_rewardsToken].rewardRate * 1e18 / _totalSupply ); } function earned(address account, address _rewardsToken) public view returns (uint256) { return (_balances[account] * (rewardPerToken(_rewardsToken) - userRewardPerTokenPaid[account][_rewardsToken]) / 1e18 ) + rewards[account][_rewardsToken]; } function getRewardForDuration(address _rewardsToken) external view returns (uint256) { return rewardData[_rewardsToken].rewardRate * rewardData[_rewardsToken].rewardsDuration; } /* ========== MUTATIVE FUNCTIONS ========== */ function setRewardsDistributor(address _rewardsToken, address _rewardsDistributor) external onlyOwner { rewardData[_rewardsToken].rewardsDistributor = _rewardsDistributor; } function stake(uint256 amount) external nonReentrant whenNotPaused updateReward(msg.sender) { require(amount > 0, "Cannot stake 0"); _totalSupply += amount; _balances[msg.sender] += amount; stakingToken.safeTransferFrom(msg.sender, address(this), amount); emit Staked(msg.sender, amount); } function withdraw(uint256 amount) public nonReentrant updateReward(msg.sender) { require(amount > 0, "Cannot withdraw 0"); _totalSupply -= amount; _balances[msg.sender] -= amount; stakingToken.safeTransfer(msg.sender, amount); emit Withdrawn(msg.sender, amount); } function getReward() public nonReentrant updateReward(msg.sender) { address[] memory _rewardsTokenArr = rewardTokens; for (uint256 i; i < _rewardsTokenArr.length; i++) { address _rewardsToken = _rewardsTokenArr[i]; uint256 reward = rewards[msg.sender][_rewardsToken]; if (reward > 0) { rewards[msg.sender][_rewardsToken] = 0; IERC20(_rewardsToken).safeTransfer(msg.sender, reward); emit RewardPaid(msg.sender, _rewardsToken, reward); } } } function exit() external { withdraw(_balances[msg.sender]); getReward(); } /* ========== RESTRICTED FUNCTIONS ========== */ function depositReward(address _rewardsToken, uint256 reward) external updateReward(address(0)) { require(rewardData[_rewardsToken].rewardsDistributor == msg.sender); if (rewardData[_rewardsToken].shouldTransfer) { IERC20(_rewardsToken).safeTransferFrom(msg.sender, address(this), reward); } if (block.timestamp >= rewardData[_rewardsToken].periodFinish) { rewardData[_rewardsToken].rewardRate = reward / rewardData[_rewardsToken].rewardsDuration; } else { uint256 remaining = rewardData[_rewardsToken].periodFinish - block.timestamp; uint256 leftover = remaining * rewardData[_rewardsToken].rewardRate; rewardData[_rewardsToken].rewardRate = (reward + leftover) / rewardData[_rewardsToken].rewardsDuration; } rewardData[_rewardsToken].lastUpdateTime = block.timestamp; rewardData[_rewardsToken].periodFinish = block.timestamp + rewardData[_rewardsToken].rewardsDuration; emit RewardAdded(reward); } // Added to support recovering LP Rewards from other systems such as BAL to be distributed to holders function recoverERC20(address tokenAddress, uint256 tokenAmount) external onlyOwner { require(tokenAddress != address(stakingToken), "Cannot withdraw staking token"); require(rewardData[tokenAddress].lastUpdateTime == 0, "Cannot withdraw reward token"); IERC20(tokenAddress).safeTransfer(owner(), tokenAmount); emit Recovered(tokenAddress, tokenAmount); } function setRewardsDuration(address _rewardsToken, uint256 _rewardsDuration) external { require( block.timestamp > rewardData[_rewardsToken].periodFinish, "Reward period still active" ); require(rewardData[_rewardsToken].rewardsDistributor == msg.sender); require(_rewardsDuration > 0, "Reward duration must be non-zero"); rewardData[_rewardsToken].rewardsDuration = _rewardsDuration; emit RewardsDurationUpdated(_rewardsToken, rewardData[_rewardsToken].rewardsDuration); } function setShouldTransferRewards(address _rewardsToken, bool _shouldTransfer) external onlyOwner { rewardData[_rewardsToken].shouldTransfer = _shouldTransfer; } function pause() external onlyOwner { _pause(); } function unpause() external onlyOwner { _unpause(); } /* ========== MODIFIERS ========== */ modifier updateReward(address account) { address[] memory _rewardsToken = rewardTokens; for (uint256 i; i < _rewardsToken.length; i++) { address token = _rewardsToken[i]; rewardData[token].rewardPerTokenStored = rewardPerToken(token); rewardData[token].lastUpdateTime = lastTimeRewardApplicable(token); if (account != address(0)) { rewards[account][token] = earned(account, token); userRewardPerTokenPaid[account][token] = rewardData[token].rewardPerTokenStored; } } _; } /* ========== EVENTS ========== */ event RewardAdded(uint256 reward); event Staked(address indexed user, uint256 amount); event Withdrawn(address indexed user, uint256 amount); event RewardPaid(address indexed user, address indexed rewardsToken, uint256 reward); event RewardsDurationUpdated(address token, uint256 newDuration); event Recovered(address token, uint256 amount); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library MathUpgradeable { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a / b + (a % b == 0 ? 0 : 1); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "ContextUpgradeable.sol"; import "Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "ContextUpgradeable.sol"; import "Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "IERC20Upgradeable.sol"; import "AddressUpgradeable.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20Upgradeable { using AddressUpgradeable for address; function safeTransfer( IERC20Upgradeable token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20Upgradeable token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20Upgradeable token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } uint256[49] private __gap; }
{ "evmVersion": "istanbul", "optimizer": { "enabled": true, "runs": 1000 }, "libraries": { "Multirewards.sol": {} }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"rewardsToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"newDuration","type":"uint256"}],"name":"RewardsDurationUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"},{"internalType":"address","name":"_rewardsDistributor","type":"address"},{"internalType":"uint256","name":"_rewardsDuration","type":"uint256"},{"internalType":"bool","name":"_shouldTransfer","type":"bool"}],"name":"addReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"},{"internalType":"uint256","name":"reward","type":"uint256"}],"name":"depositReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"_rewardsToken","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"exit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"}],"name":"getRewardForDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_stakingToken","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"}],"name":"lastTimeRewardApplicable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardData","outputs":[{"internalType":"bool","name":"shouldTransfer","type":"bool"},{"internalType":"address","name":"rewardsDistributor","type":"address"},{"internalType":"uint256","name":"rewardsDuration","type":"uint256"},{"internalType":"uint256","name":"periodFinish","type":"uint256"},{"internalType":"uint256","name":"rewardRate","type":"uint256"},{"internalType":"uint256","name":"lastUpdateTime","type":"uint256"},{"internalType":"uint256","name":"rewardPerTokenStored","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"}],"name":"rewardPerToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardTokens","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"rewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"},{"internalType":"address","name":"_rewardsDistributor","type":"address"}],"name":"setRewardsDistributor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"},{"internalType":"uint256","name":"_rewardsDuration","type":"uint256"}],"name":"setRewardsDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"},{"internalType":"bool","name":"_shouldTransfer","type":"bool"}],"name":"setShouldTransferRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakingToken","outputs":[{"internalType":"contract IERC20Upgradeable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"userRewardPerTokenPaid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.