ETH Price: $3,463.74 (-0.87%)
Gas: 27 Gwei

Contract

0x63CF55ab55ABcaD4E84335B80bbE3D2DefA09410
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Value
Transfer Ownersh...155754662022-09-20 15:04:59569 days ago1663686299IN
0x63CF55ab...DefA09410
0 ETH0.0004536615.90917261
Add Feed For155754662022-09-20 15:04:59569 days ago1663686299IN
0x63CF55ab...DefA09410
0 ETH0.0008084415.90917261
0x60806040155754542022-09-20 15:02:35569 days ago1663686155IN
 Create: JBPrices
0 ETH0.0123422718.03078474

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
JBPrices

Compiler Version
v0.8.16+commit.07a7930e

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion, MIT license
File 1 of 7 : JBPrices.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;

import '@openzeppelin/contracts/access/Ownable.sol';
import '@paulrberg/contracts/math/PRBMath.sol';
import './interfaces/IJBPrices.sol';

/** 
  @notice 
  Manages and normalizes price feeds.

  @dev
  Adheres to -
  IJBPrices: General interface for the methods in this contract that interact with the blockchain's state according to the protocol's rules.

  @dev
  Inherits from -
  Ownable: Includes convenience functionality for checking a message sender's permissions before executing certain transactions.
*/
contract JBPrices is Ownable, IJBPrices {
  //*********************************************************************//
  // --------------------------- custom errors ------------------------- //
  //*********************************************************************//
  error PRICE_FEED_ALREADY_EXISTS();
  error PRICE_FEED_NOT_FOUND();

  //*********************************************************************//
  // --------------------- public stored properties -------------------- //
  //*********************************************************************//

  /** 
    @notice 
    The available price feeds.

    @dev
    The feed returns the number of `_currency` units that can be converted to 1 `_base` unit.

    _currency The currency units the feed's resulting price is in terms of.
    _base The base currency unit being priced by the feed.
  */
  mapping(uint256 => mapping(uint256 => IJBPriceFeed)) public override feedFor;

  //*********************************************************************//
  // ------------------------- external views -------------------------- //
  //*********************************************************************//

  /** 
    @notice
    Gets the number of `_currency` units that can be converted to 1 `_base` unit.

    @param _currency The currency units the resulting price is in terms of.
    @param _base The base currency unit being priced.
    @param _decimals The number of decimals the returned fixed point price should include.
    
    @return The price of the currency in terms of the base, as a fixed point number with the specified number of decimals.
  */
  function priceFor(
    uint256 _currency,
    uint256 _base,
    uint256 _decimals
  ) external view override returns (uint256) {
    // If the currency is the base, return 1 since they are priced the same. Include the desired number of decimals.
    if (_currency == _base) return 10**_decimals;

    // Get a reference to the feed.
    IJBPriceFeed _feed = feedFor[_currency][_base];

    // If it exists, return the price.
    if (_feed != IJBPriceFeed(address(0))) return _feed.currentPrice(_decimals);

    // Get the inverse feed.
    _feed = feedFor[_base][_currency];

    // If it exists, return the inverse price.
    if (_feed != IJBPriceFeed(address(0)))
      return PRBMath.mulDiv(10**_decimals, 10**_decimals, _feed.currentPrice(_decimals));

    // No price feed available, revert.
    revert PRICE_FEED_NOT_FOUND();
  }

  //*********************************************************************//
  // ---------------------------- constructor -------------------------- //
  //*********************************************************************//

  /** 
    @param _owner The address that will own the contract.
  */
  constructor(address _owner) {
    // Transfer the ownership.
    transferOwnership(_owner);
  }

  //*********************************************************************//
  // ---------------------- external transactions ---------------------- //
  //*********************************************************************//

  /** 
    @notice 
    Add a price feed for a currency in terms of the provided base currency.

    @dev
    Current feeds can't be modified.

    @param _currency The currency units the feed's resulting price is in terms of.
    @param _base The base currency unit being priced by the feed.
    @param _feed The price feed being added.
  */
  function addFeedFor(
    uint256 _currency,
    uint256 _base,
    IJBPriceFeed _feed
  ) external override onlyOwner {
    // There can't already be a feed for the specified currency.
    if (
      feedFor[_currency][_base] != IJBPriceFeed(address(0)) ||
      feedFor[_base][_currency] != IJBPriceFeed(address(0))
    ) revert PRICE_FEED_ALREADY_EXISTS();

    // Store the feed.
    feedFor[_currency][_base] = _feed;

    emit AddFeed(_currency, _base, _feed);
  }
}

File 2 of 7 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 7 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 4 of 7 : PRBMath.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "prb-math/contracts/PRBMath.sol";

File 6 of 7 : IJBPriceFeed.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IJBPriceFeed {
  function currentPrice(uint256 _targetDecimals) external view returns (uint256);
}

File 7 of 7 : IJBPrices.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import './IJBPriceFeed.sol';

interface IJBPrices {
  event AddFeed(uint256 indexed currency, uint256 indexed base, IJBPriceFeed feed);

  function feedFor(uint256 _currency, uint256 _base) external view returns (IJBPriceFeed);

  function priceFor(
    uint256 _currency,
    uint256 _base,
    uint256 _decimals
  ) external view returns (uint256);

  function addFeedFor(
    uint256 _currency,
    uint256 _base,
    IJBPriceFeed _priceFeed
  ) external;
}

File 8 of 7 : PRBMath.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
    /// STRUCTS ///

    struct SD59x18 {
        int256 value;
    }

    struct UD60x18 {
        uint256 value;
    }

    /// STORAGE ///

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @dev Largest power of two divisor of SCALE.
    uint256 internal constant SCALE_LPOTD = 262144;

    /// @dev SCALE inverted mod 2^256.
    uint256 internal constant SCALE_INVERSE =
        78156646155174841979727994598816262306175212592076161876661_508869554232690281;

    /// FUNCTIONS ///

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers.
    /// See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
            // because the initial result is 2^191 and all magic factors are less than 2^65.
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }

            // We're doing two things at the same time:
            //
            //   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
            //      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
            //      rather than 192.
            //   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
            //
            // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
            result *= SCALE;
            result >>= (191 - (x >> 64));
        }
    }

    /// @notice Finds the zero-based index of the first one in the binary representation of x.
    /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return msb The index of the most significant bit as an uint256.
    function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
        if (x >= 2**128) {
            x >>= 128;
            msb += 128;
        }
        if (x >= 2**64) {
            x >>= 64;
            msb += 64;
        }
        if (x >= 2**32) {
            x >>= 32;
            msb += 32;
        }
        if (x >= 2**16) {
            x >>= 16;
            msb += 16;
        }
        if (x >= 2**8) {
            x >>= 8;
            msb += 8;
        }
        if (x >= 2**4) {
            x >>= 4;
            msb += 4;
        }
        if (x >= 2**2) {
            x >>= 2;
            msb += 2;
        }
        if (x >= 2**1) {
            // No need to shift x any more.
            msb += 1;
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                result = prod0 / denominator;
            }
            return result;
        }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath__MulDivOverflow(prod1, denominator);
        }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /// @notice Calculates floor(x*y÷1e18) with full precision.
    ///
    /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
    /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
    /// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
    ///
    /// Requirements:
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
    ///     1. x * y = type(uint256).max * SCALE
    ///     2. (x * y) % SCALE >= SCALE / 2
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        if (prod1 >= SCALE) {
            revert PRBMath__MulDivFixedPointOverflow(prod1);
        }

        uint256 remainder;
        uint256 roundUpUnit;
        assembly {
            remainder := mulmod(x, y, SCALE)
            roundUpUnit := gt(remainder, 499999999999999999)
        }

        if (prod1 == 0) {
            unchecked {
                result = (prod0 / SCALE) + roundUpUnit;
                return result;
            }
        }

        assembly {
            result := add(
                mul(
                    or(
                        div(sub(prod0, remainder), SCALE_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
                    ),
                    SCALE_INVERSE
                ),
                roundUpUnit
            )
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - None of the inputs can be type(int256).min.
    /// - The result must fit within int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    function mulDivSigned(
        int256 x,
        int256 y,
        int256 denominator
    ) internal pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath__MulDivSignedInputTooSmall();
        }

        // Get hold of the absolute values of x, y and the denominator.
        uint256 ax;
        uint256 ay;
        uint256 ad;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
            ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }

        // Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
        uint256 rAbs = mulDiv(ax, ay, ad);
        if (rAbs > uint256(type(int256).max)) {
            revert PRBMath__MulDivSignedOverflow(rAbs);
        }

        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }

        // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
        // If yes, the result should be negative.
        result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as an uint256.
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        // Set the initial guess to the closest power of two that is higher than x.
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 0x100000000000000000000000000000000) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 0x10000000000000000) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 0x100000000) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 0x10000) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 0x100) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 0x10) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 0x8) {
            result <<= 1;
        }

        // The operations can never overflow because the result is max 2^127 when it enters this block.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1; // Seven iterations should be enough
            uint256 roundedDownResult = x / result;
            return result >= roundedDownResult ? roundedDownResult : result;
        }
    }
}

Settings
{
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "remappings": [],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"inputs":[],"name":"PRICE_FEED_ALREADY_EXISTS","type":"error"},{"inputs":[],"name":"PRICE_FEED_NOT_FOUND","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"currency","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"base","type":"uint256"},{"indexed":false,"internalType":"contract IJBPriceFeed","name":"feed","type":"address"}],"name":"AddFeed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"uint256","name":"_currency","type":"uint256"},{"internalType":"uint256","name":"_base","type":"uint256"},{"internalType":"contract IJBPriceFeed","name":"_feed","type":"address"}],"name":"addFeedFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"feedFor","outputs":[{"internalType":"contract IJBPriceFeed","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_currency","type":"uint256"},{"internalType":"uint256","name":"_base","type":"uint256"},{"internalType":"uint256","name":"_decimals","type":"uint256"}],"name":"priceFor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b50604051610c8f380380610c8f83398101604081905261002f91610167565b61003833610047565b61004181610097565b50610197565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000546001600160a01b031633146100f65760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064015b60405180910390fd5b6001600160a01b03811661015b5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016100ed565b61016481610047565b50565b60006020828403121561017957600080fd5b81516001600160a01b038116811461019057600080fd5b9392505050565b610ae9806101a66000396000f3fe608060405234801561001057600080fd5b50600436106100725760003560e01c806396364e6d1161005057806396364e6d1461010a578063a4d0caf21461011d578063f2fde38b1461013e57600080fd5b806315d63a9114610077578063715018a6146100e25780638da5cb5b146100ec575b600080fd5b6100b8610085366004610848565b600160209081526000928352604080842090915290825290205473ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b6100ea610151565b005b60005473ffffffffffffffffffffffffffffffffffffffff166100b8565b6100ea61011836600461088c565b6101e3565b61013061012b3660046108c5565b61039a565b6040519081526020016100d9565b6100ea61014c3660046108f1565b61059f565b60005473ffffffffffffffffffffffffffffffffffffffff1633146101d7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064015b60405180910390fd5b6101e160006106cf565b565b60005473ffffffffffffffffffffffffffffffffffffffff163314610264576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016101ce565b600083815260016020908152604080832085845290915290205473ffffffffffffffffffffffffffffffffffffffff161515806102cf5750600082815260016020908152604080832086845290915290205473ffffffffffffffffffffffffffffffffffffffff1615155b15610306576040517fd28d564f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600083815260016020908152604080832085845282529182902080547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff85169081179091559151918252839185917f2809ef679fa4c20b88a6467f2660840ad173b5205fef76c270c5d7ba44cb7057910160405180910390a3505050565b60008284036103b5576103ae82600a610a5f565b9050610598565b600084815260016020908152604080832086845290915290205473ffffffffffffffffffffffffffffffffffffffff168015610482576040517f7a3c4c170000000000000000000000000000000000000000000000000000000081526004810184905273ffffffffffffffffffffffffffffffffffffffff821690637a3c4c1790602401602060405180830381865afa158015610456573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061047a9190610a6b565b915050610598565b50600083815260016020908152604080832087845290915290205473ffffffffffffffffffffffffffffffffffffffff1680156105665761047a6104c784600a610a5f565b6104d285600a610a5f565b6040517f7a3c4c170000000000000000000000000000000000000000000000000000000081526004810187905273ffffffffffffffffffffffffffffffffffffffff851690637a3c4c1790602401602060405180830381865afa15801561053d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105619190610a6b565b610744565b6040517f75c9d5ca00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b9392505050565b60005473ffffffffffffffffffffffffffffffffffffffff163314610620576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016101ce565b73ffffffffffffffffffffffffffffffffffffffff81166106c3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016101ce565b6106cc816106cf565b50565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8587098587029250828110838203039150508060000361079c5783828161079257610792610a84565b0492505050610598565b8381106107df576040517f773cc18c00000000000000000000000000000000000000000000000000000000815260048101829052602481018590526044016101ce565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000806040838503121561085b57600080fd5b50508035926020909101359150565b73ffffffffffffffffffffffffffffffffffffffff811681146106cc57600080fd5b6000806000606084860312156108a157600080fd5b833592506020840135915060408401356108ba8161086a565b809150509250925092565b6000806000606084860312156108da57600080fd5b505081359360208301359350604090920135919050565b60006020828403121561090357600080fd5b81356105988161086a565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600181815b8085111561099657817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0482111561097c5761097c61090e565b8085161561098957918102915b93841c9390800290610942565b509250929050565b6000826109ad57506001610a59565b816109ba57506000610a59565b81600181146109d057600281146109da576109f6565b6001915050610a59565b60ff8411156109eb576109eb61090e565b50506001821b610a59565b5060208310610133831016604e8410600b8410161715610a19575081810a610a59565b610a23838361093d565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115610a5557610a5561090e565b0290505b92915050565b6000610598838361099e565b600060208284031215610a7d57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fdfea264697066735822122018f421ad2683adf0ea7e9b0abad40e33823bd5d51e44c746da2b1a324ab2738b64736f6c63430008100033000000000000000000000000e9be6df23c7f9caba3005da2fa2d8714d340d0af

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100725760003560e01c806396364e6d1161005057806396364e6d1461010a578063a4d0caf21461011d578063f2fde38b1461013e57600080fd5b806315d63a9114610077578063715018a6146100e25780638da5cb5b146100ec575b600080fd5b6100b8610085366004610848565b600160209081526000928352604080842090915290825290205473ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b6100ea610151565b005b60005473ffffffffffffffffffffffffffffffffffffffff166100b8565b6100ea61011836600461088c565b6101e3565b61013061012b3660046108c5565b61039a565b6040519081526020016100d9565b6100ea61014c3660046108f1565b61059f565b60005473ffffffffffffffffffffffffffffffffffffffff1633146101d7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064015b60405180910390fd5b6101e160006106cf565b565b60005473ffffffffffffffffffffffffffffffffffffffff163314610264576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016101ce565b600083815260016020908152604080832085845290915290205473ffffffffffffffffffffffffffffffffffffffff161515806102cf5750600082815260016020908152604080832086845290915290205473ffffffffffffffffffffffffffffffffffffffff1615155b15610306576040517fd28d564f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600083815260016020908152604080832085845282529182902080547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff85169081179091559151918252839185917f2809ef679fa4c20b88a6467f2660840ad173b5205fef76c270c5d7ba44cb7057910160405180910390a3505050565b60008284036103b5576103ae82600a610a5f565b9050610598565b600084815260016020908152604080832086845290915290205473ffffffffffffffffffffffffffffffffffffffff168015610482576040517f7a3c4c170000000000000000000000000000000000000000000000000000000081526004810184905273ffffffffffffffffffffffffffffffffffffffff821690637a3c4c1790602401602060405180830381865afa158015610456573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061047a9190610a6b565b915050610598565b50600083815260016020908152604080832087845290915290205473ffffffffffffffffffffffffffffffffffffffff1680156105665761047a6104c784600a610a5f565b6104d285600a610a5f565b6040517f7a3c4c170000000000000000000000000000000000000000000000000000000081526004810187905273ffffffffffffffffffffffffffffffffffffffff851690637a3c4c1790602401602060405180830381865afa15801561053d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105619190610a6b565b610744565b6040517f75c9d5ca00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b9392505050565b60005473ffffffffffffffffffffffffffffffffffffffff163314610620576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016101ce565b73ffffffffffffffffffffffffffffffffffffffff81166106c3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016101ce565b6106cc816106cf565b50565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8587098587029250828110838203039150508060000361079c5783828161079257610792610a84565b0492505050610598565b8381106107df576040517f773cc18c00000000000000000000000000000000000000000000000000000000815260048101829052602481018590526044016101ce565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000806040838503121561085b57600080fd5b50508035926020909101359150565b73ffffffffffffffffffffffffffffffffffffffff811681146106cc57600080fd5b6000806000606084860312156108a157600080fd5b833592506020840135915060408401356108ba8161086a565b809150509250925092565b6000806000606084860312156108da57600080fd5b505081359360208301359350604090920135919050565b60006020828403121561090357600080fd5b81356105988161086a565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600181815b8085111561099657817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0482111561097c5761097c61090e565b8085161561098957918102915b93841c9390800290610942565b509250929050565b6000826109ad57506001610a59565b816109ba57506000610a59565b81600181146109d057600281146109da576109f6565b6001915050610a59565b60ff8411156109eb576109eb61090e565b50506001821b610a59565b5060208310610133831016604e8410600b8410161715610a19575081810a610a59565b610a23838361093d565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115610a5557610a5561090e565b0290505b92915050565b6000610598838361099e565b600060208284031215610a7d57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fdfea264697066735822122018f421ad2683adf0ea7e9b0abad40e33823bd5d51e44c746da2b1a324ab2738b64736f6c63430008100033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000e9be6df23c7f9caba3005da2fa2d8714d340d0af

-----Decoded View---------------
Arg [0] : _owner (address): 0xE9bE6df23C7f9CaBa3005DA2fa2d8714d340D0aF

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000e9be6df23c7f9caba3005da2fa2d8714d340d0af


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Txn Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.