ETH Price: $2,355.65 (-0.33%)
Gas: 1.69 Gwei

Contract

0x5Cb7880035bD592a66aad803ce1Cdf6Aa385e2a1
 

Overview

ETH Balance

0.0014515 ETH

Eth Value

$3.42 (@ $2,355.65/ETH)

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Release165558262023-02-04 13:50:47586 days ago1675518647IN
fees.wtf: Team Referral
0 ETH0.0013933223.41126557
Transfer152716592022-08-03 20:40:50771 days ago1659559250IN
fees.wtf: Team Referral
0.00506449 ETH0.0003042514.45036709
Transfer144818572022-03-29 15:19:20898 days ago1648567160IN
fees.wtf: Team Referral
0.0175025 ETH0.0011081152.62942278
Transfer142002552022-02-13 21:32:48942 days ago1644787968IN
fees.wtf: Team Referral
0.0262385 ETH0.0019106690.74622394
Release141946982022-02-13 1:05:36943 days ago1644714336IN
fees.wtf: Team Referral
0 ETH0.0029500151.74104462
Release140519692022-01-21 23:56:55965 days ago1642809415IN
fees.wtf: Team Referral
0 ETH0.01890982331.6640034
Release140008182022-01-14 2:05:19973 days ago1642125919IN
fees.wtf: Team Referral
0 ETH0.01781726299.37431433
Release140005512022-01-14 1:06:07973 days ago1642122367IN
fees.wtf: Team Referral
0 ETH0.02159604362.86732237
Release139999222022-01-13 22:42:36973 days ago1642113756IN
fees.wtf: Team Referral
0 ETH0.01217431204.55868293
Release139993982022-01-13 20:47:37973 days ago1642106857IN
fees.wtf: Team Referral
0 ETH0.01171859196.90155703
Transfer139991522022-01-13 19:56:24973 days ago1642103784IN
fees.wtf: Team Referral
0.01 ETH0.00362604172.21762129
Release139971492022-01-13 12:33:22973 days ago1642077202IN
fees.wtf: Team Referral
0 ETH0.00981997165
Release139960412022-01-13 8:17:29973 days ago1642061849IN
fees.wtf: Team Referral
0 ETH0.01863539141.16120542

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
186333342023-11-23 8:47:59294 days ago1700729279
fees.wtf: Team Referral
0.000025 ETH
182934052023-10-06 19:00:11342 days ago1696618811
fees.wtf: Team Referral
0.000125 ETH
182933952023-10-06 18:57:59342 days ago1696618679
fees.wtf: Team Referral
0.00012 ETH
170713312023-04-18 4:52:35513 days ago1681793555
fees.wtf: Team Referral
0.000049 ETH
170336202023-04-12 18:13:23519 days ago1681323203
fees.wtf: Team Referral
0.000125 ETH
170238992023-04-11 9:13:47520 days ago1681204427
fees.wtf: Team Referral
0.00003 ETH
169803952023-04-05 5:01:11526 days ago1680670871
fees.wtf: Team Referral
0.000125 ETH
168316442023-03-15 6:52:23547 days ago1678863143
fees.wtf: Team Referral
0.00003 ETH
167805122023-03-08 2:15:35555 days ago1678241735
fees.wtf: Team Referral
0.000275 ETH
167313492023-03-01 4:18:35561 days ago1677644315
fees.wtf: Team Referral
0.00005 ETH
166125922023-02-12 12:10:23578 days ago1676203823
fees.wtf: Team Referral
0.00025 ETH
166019002023-02-11 0:20:11580 days ago1676074811
fees.wtf: Team Referral
0.0002475 ETH
165558262023-02-04 13:50:47586 days ago1675518647
fees.wtf: Team Referral
0.01822664 ETH
165558262023-02-04 13:50:47586 days ago1675518647
fees.wtf: Team Referral
0.01822664 ETH
165558262023-02-04 13:50:47586 days ago1675518647
fees.wtf: Team Referral
0.01822664 ETH
165558262023-02-04 13:50:47586 days ago1675518647
fees.wtf: Team Referral
0.00607554 ETH
164456172023-01-20 4:26:47601 days ago1674188807
fees.wtf: Team Referral
0.000195 ETH
164367192023-01-18 22:37:23603 days ago1674081443
fees.wtf: Team Referral
0.0002225 ETH
164062072023-01-14 16:22:11607 days ago1673713331
fees.wtf: Team Referral
0.0002475 ETH
163784292023-01-10 19:14:11611 days ago1673378051
fees.wtf: Team Referral
0.000275 ETH
163608582023-01-08 8:24:11613 days ago1673166251
fees.wtf: Team Referral
0.0003 ETH
161221752022-12-06 0:30:11647 days ago1670286611
fees.wtf: Team Referral
0.0003 ETH
160312012022-11-23 7:27:35659 days ago1669188455
fees.wtf: Team Referral
0.000375 ETH
160079672022-11-20 1:32:59663 days ago1668907979
fees.wtf: Team Referral
0.0003 ETH
158719982022-11-01 1:44:11682 days ago1667267051
fees.wtf: Team Referral
0.0005 ETH
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
TeamReferral

Compiler Version
v0.8.11+commit.d7f03943

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, MIT license

Contract Source Code (Solidity Multiple files format)

File 1 of 8: Treasury.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;

import "./ERC20.sol";
import "./WTF.sol";
import "./StakingRewards.sol";


contract FeeManager {

	WTF private wtf;

	constructor() {
		wtf = WTF(msg.sender);
	}

	function disburse() external {
		wtf.claimRewards();
		uint256 _balance = wtf.balanceOf(address(this));
		if (_balance > 0) {
			uint256 _oneFifth = _balance / 5;
			Treasury(payable(wtf.treasuryAddress())).collect();
			wtf.transfer(wtf.treasuryAddress(), _oneFifth); // 20%
			StakingRewards(wtf.stakingRewardsAddress()).disburse(_oneFifth); // 20%
			StakingRewards(wtf.lpStakingRewardsAddress()).disburse(3 * _oneFifth); // 60%
		}
	}


	function wtfAddress() external view returns (address) {
		return address(wtf);
	}
}


contract TeamReferral {
	receive() external payable {}
	function release() external {
		address _this = address(this);
		require(_this.balance > 0);
		payable(0x6129E7bCb71C0d7D4580141C4E6a995f16293F42).transfer(_this.balance / 10); // 10%
		payable(0xc9AebdD8fD0d52c35A32fD9155467Cf28Ce474c3).transfer(_this.balance / 3); // 30%
		payable(0xdEE79eD62B42e30EA7EbB6f1b7A3f04143D18b7F).transfer(_this.balance / 2); // 30%
		payable(0x575446Aa9E9647C40edB7a467e45C5916add1538).transfer(_this.balance); // 30%
	}
}


contract Treasury {

	address public owner;
	uint256 public lockedUntil;
	WTF private wtf;

	modifier _onlyOwner() {
		require(msg.sender == owner);
		_;
	}

	constructor() {
		owner = 0x65dd4990719bE9B20322e4E8D3Bd77a4401a0357;
		lockedUntil = block.timestamp + 30 days;
		wtf = WTF(msg.sender);
	}

	receive() external payable {}

	function setOwner(address _owner) external _onlyOwner {
		owner = _owner;
	}

	function transferETH(address payable _destination, uint256 _amount) external _onlyOwner {
		require(isUnlocked());
		_destination.transfer(_amount);
	}

	function transferTokens(ERC20 _token, address _destination, uint256 _amount) external _onlyOwner {
		require(isUnlocked());
		_token.transfer(_destination, _amount);
	}

	function collect() external {
		wtf.claimRewards();
	}


	function isUnlocked() public view returns (bool) {
		return block.timestamp > lockedUntil;
	}

	function wtfAddress() external view returns (address) {
		return address(wtf);
	}
}

File 2 of 8: ERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;

interface ERC20 {
	function allowance(address, address) external view returns (uint256);
	function balanceOf(address) external view returns (uint256);
	function transfer(address, uint256) external returns (bool);
	function transferFrom(address, address, uint256) external returns (bool);
}

File 3 of 8: Metadata.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;

import "./WTFNFT.sol";

interface PriceOracle {
	function getPrice() external view returns (uint256);
}


contract Metadata {
	
	string public name = "fees.wtf NFT";
	string public symbol = "fees.wtf";

	string constant private TABLE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';

	WTFNFT public nft;
	PriceOracle public oracle;

	constructor(WTFNFT _nft) {
		nft = _nft;
		oracle = PriceOracle(0xe89b5B2770Aa1a6BcfAc6F3517510aB8e9146651);
	}

	function setPriceOracle(PriceOracle _oracle) external {
		require(msg.sender == nft.owner());
		oracle = _oracle;
	}


	function tokenURI(uint256 _tokenId) external view returns (string memory) {
		( , , address _user, uint256[7] memory _info) = nft.getToken(_tokenId);
		return rawTokenURI(_user, _info[0], _info[1], _info[2], _info[3], _info[4], _info[5], _info[6], oracle.getPrice());
	}

	function rawTokenURI(address _user, uint256 _totalFees, uint256 _failFees, uint256 _totalGas, uint256 _avgGwei, uint256 _totalDonated, uint256 _totalTxs, uint256 _failTxs, uint256 _price) public pure returns (string memory) {
		string memory _json = string(abi.encodePacked('{"name":"', _trimAddress(_user, 6), '","description":"[fees.wtf](https://fees.wtf) snapshot at block 13916450 for [', _address2str(_user), '](https://etherscan.io/address/', _address2str(_user), ')",'));
		_json = string(abi.encodePacked(_json, '"image":"data:image/svg+xml;base64,', _encode(bytes(getRawSVG(_totalFees, _failFees, _totalGas, _avgGwei, _totalDonated, _totalTxs, _failTxs, _price))), '","attributes":['));
		if (_totalFees > 0) {
			_json = string(abi.encodePacked(_json, '{"trait_type":"Total Fees","value":', _uint2str(_totalFees, 18, 5, false, true), '}'));
			_json = string(abi.encodePacked(_json, ',{"trait_type":"Fail Fees","value":', _uint2str(_failFees, 18, 5, false, true), '}'));
			_json = string(abi.encodePacked(_json, ',{"trait_type":"Total Gas","value":', _uint2str(_totalGas, 0, 0, false, false), '}'));
			_json = string(abi.encodePacked(_json, ',{"trait_type":"Average Gwei","value":', _uint2str(_avgGwei, 9, 5, false, true), '}'));
			_json = string(abi.encodePacked(_json, ',{"trait_type":"Total Transactions","value":', _uint2str(_totalTxs, 0, 0, false, false), '}'));
			_json = string(abi.encodePacked(_json, ',{"trait_type":"Failed Transactions","value":', _uint2str(_failTxs, 0, 0, false, false), '}'));
			_json = string(abi.encodePacked(_json, ',{"display_type":"number","trait_type":"Spender Level","value":', _uint2str(_logn(_totalFees / 1e13, 2), 0, 0, false, false), '}'));
			_json = string(abi.encodePacked(_json, ',{"display_type":"number","trait_type":"Oof Level","value":', _uint2str(_logn(_failFees / 1e13, 2), 0, 0, false, false), '}'));
		}
		if (_totalDonated > 0) {
			_json = string(abi.encodePacked(_json, _totalFees > 0 ? ',' : '', '{"display_type":"number","trait_type":"Donator Level","value":', _uint2str(_logn(_totalDonated / 1e14, 10) + 1, 0, 0, false, false), '}'));
		}
		_json = string(abi.encodePacked(_json, ']}'));
		return string(abi.encodePacked("data:application/json;base64,", _encode(bytes(_json))));
	}

	function getSVG(uint256 _tokenId) public view returns (string memory) {
		uint256[7] memory _info = nft.getTokenCompressedInfo(_tokenId);
		return getRawSVG(_info[0], _info[1], _info[2], _info[3], _info[4], _info[5], _info[6], oracle.getPrice());
	}

	function getRawSVG(uint256 _totalFees, uint256 _failFees, uint256 _totalGas, uint256 _avgGwei, uint256 _totalDonated, uint256 _totalTxs, uint256 _failTxs, uint256 _price) public pure returns (string memory svg) {
		svg = string(abi.encodePacked("<svg xmlns='http://www.w3.org/2000/svg' version='1.1' preserveAspectRatio='xMidYMid meet' viewBox='0 0 512 512' width='100%' height='100%'>"));
		svg = string(abi.encodePacked(svg, "<defs><style type='text/css'>text{text-anchor:middle;alignment-baseline:central;}tspan>tspan{fill:#03a9f4;font-weight:700;}</style></defs>"));
		svg = string(abi.encodePacked(svg, "<rect width='100%' height='100%' fill='#222222' />"));
		svg = string(abi.encodePacked(svg, "<text x='0' y='256' transform='translate(256)' fill='#f0f8ff' font-family='Arial,sans-serif' font-weight='600' font-size='30'>"));
		if (_totalFees > 0) {
			svg = string(abi.encodePacked(svg, unicode"<tspan x='0' dy='-183'>You spent <tspan>Ξ", _uint2str(_totalFees, 18, 5, true, false), "</tspan> on gas</tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='35'>before block 13916450.</tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='35'>Right now, that's</tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='35'><tspan>$", _uint2str(_totalFees * _price / 1e18, 18, 2, true, true), "</tspan>.</tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='70'>You used <tspan>", _uint2str(_totalGas, 0, 0, true, false), "</tspan></tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='35'>gas to send <tspan>", _uint2str(_totalTxs, 0, 0, true, false), "</tspan></tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='35'>transaction", _totalTxs == 1 ? "" : "s", ", with an average</tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='35'>price of <tspan>", _uint2str(_avgGwei, 9, 3, true, false), "</tspan> Gwei.</tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='70'><tspan>", _uint2str(_failTxs, 0, 0, true, false), "</tspan> of them failed,</tspan>"));
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='35'>costing you <tspan>", _failFees == 0 ? "nothing" : string(abi.encodePacked(unicode"Ξ", _uint2str(_failFees, 18, 5, true, false))), "</tspan>.</tspan></text>"));
		} else {
			svg = string(abi.encodePacked(svg, "<tspan x='0' dy='8'>Did not qualify.</tspan></text>"));
		}
		if (_totalDonated > 0) {
			for (uint256 i = 0; i <= _logn(_totalDonated / 1e14, 10); i++) {
				for (uint256 j = 0; j < 4; j++) {
					string memory _prefix = string(abi.encodePacked("<text x='", j < 2 ? "16" : "496", "' y='", j % 2 == 0 ? "18" : "498", "' font-size='10' transform='translate("));
					svg = string(abi.encodePacked(svg, _prefix, j < 2 ? "" : "-", _uint2str(16 * i, 0, 0, false, false), ")'>", unicode"❤️</text>"));
					if (i > 0) {
						svg = string(abi.encodePacked(svg, _prefix, "0,", j % 2 == 0 ? "" : "-", _uint2str(16 * i, 0, 0, false, false), ")'>", unicode"❤️</text>"));
					}
				}
			}
		}
		svg = string(abi.encodePacked(svg, "<text x='0' y='500' transform='translate(256)' fill='#f0f8ff' font-family='Arial,sans-serif' font-weight='600' font-size='10'><tspan>fees<tspan>.wtf</tspan></tspan></text></svg>"));
	}


	function _logn(uint256 _num, uint256 _n) internal pure returns (uint256) {
		require(_n > 0);
		uint256 _count = 0;
		while (_num > _n - 1) {
			_num /= _n;
			_count++;
		}
		return _count;
	}
	
	function _address2str(address _address) internal pure returns (string memory str) {
		str = "0x";
		for (uint256 i; i < 40; i++) {
			uint256 _hex = (uint160(_address) >> (4 * (39 - i))) % 16;
			bytes memory _char = new bytes(1);
			_char[0] = bytes1(uint8(_hex) + (_hex > 9 ? 87 : 48));
			str = string(abi.encodePacked(str, string(_char)));
		}
	}

	function _trimAddress(address _address, uint256 _padding) internal pure returns (string memory str) {
		require(_padding < 20);
		str = "";
		bytes memory _strAddress = bytes(_address2str(_address));
		uint256 _length = 2 * _padding + 2;
		for (uint256 i = 0; i < 2 * _padding + 2; i++) {
			bytes memory _char = new bytes(1);
			_char[0] = _strAddress[i < _padding + 2 ? i : 42 + i - _length];
			str = string(abi.encodePacked(str, string(_char)));
			if (i == _padding + 1) {
				str = string(abi.encodePacked(str, unicode"…"));
			}
		}
	}
	
	function _uint2str(uint256 _value, uint256 _scale, uint256 _maxDecimals, bool _commas, bool _full) internal pure returns (string memory str) {
		uint256 _d = _scale > _maxDecimals ? _maxDecimals : _scale;
		uint256 _n = _value / 10**(_scale > _d ? _scale - _d : 0);
		if (_n == 0) {
			return "0";
		}
		uint256 _digits = 1;
		uint256 _tmp = _n;
		while (_tmp > 9) {
			_tmp /= 10;
			_digits++;
		}
		_tmp = _digits > _d ? _digits : _d + 1;
		uint256 _offset = (!_full && _tmp > _d + 1 ? _tmp - _d - 1 > _d ? _d : _tmp - _d - 1 : 0);
		for (uint256 i = 0; i < _tmp - _offset; i++) {
			uint256 _dec = i < _tmp - _digits ? 0 : (_n / (10**(_tmp - i - 1))) % 10;
			bytes memory _char = new bytes(1);
			_char[0] = bytes1(uint8(_dec) + 48);
			str = string(abi.encodePacked(str, string(_char)));
			if (i < _tmp - _d - 1) {
				if (_commas && (i + 1) % 3 == (_tmp - _d) % 3) {
					str = string(abi.encodePacked(str, ","));
				}
			} else {
				if (!_full && (_n / 10**_offset) % 10**(_tmp - _offset - i - 1) == 0) {
					break;
				} else if (i == _tmp - _d - 1) {
					str = string(abi.encodePacked(str, "."));
				}
			}
		}
	}
	
	function _encode(bytes memory _data) internal pure returns (string memory result) {
		if (_data.length == 0) return '';
		string memory _table = TABLE;
		uint256 _encodedLen = 4 * ((_data.length + 2) / 3);
		result = new string(_encodedLen + 32);

		assembly {
			mstore(result, _encodedLen)
			let tablePtr := add(_table, 1)
			let dataPtr := _data
			let endPtr := add(dataPtr, mload(_data))
			let resultPtr := add(result, 32)

			for {} lt(dataPtr, endPtr) {}
			{
				dataPtr := add(dataPtr, 3)
				let input := mload(dataPtr)
				mstore(resultPtr, shl(248, mload(add(tablePtr, and(shr(18, input), 0x3F)))))
				resultPtr := add(resultPtr, 1)
				mstore(resultPtr, shl(248, mload(add(tablePtr, and(shr(12, input), 0x3F)))))
				resultPtr := add(resultPtr, 1)
				mstore(resultPtr, shl(248, mload(add(tablePtr, and(shr( 6, input), 0x3F)))))
				resultPtr := add(resultPtr, 1)
				mstore(resultPtr, shl(248, mload(add(tablePtr, and(        input,  0x3F)))))
				resultPtr := add(resultPtr, 1)
			}
			switch mod(mload(_data), 3)
			case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) }
			case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) }
		}
		return result;
	}
}

File 4 of 8: PRBMath.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
	/// STRUCTS ///

	struct SD59x18 {
		int256 value;
	}

	struct UD60x18 {
		uint256 value;
	}

	/// STORAGE ///

	/// @dev How many trailing decimals can be represented.
	uint256 internal constant SCALE = 1e18;

	/// @dev Largest power of two divisor of SCALE.
	uint256 internal constant SCALE_LPOTD = 262144;

	/// @dev SCALE inverted mod 2^256.
	uint256 internal constant SCALE_INVERSE =
		78156646155174841979727994598816262306175212592076161876661_508869554232690281;

	/// FUNCTIONS ///

	/// @notice Calculates the binary exponent of x using the binary fraction method.
	/// @dev Has to use 192.64-bit fixed-point numbers.
	/// See https://ethereum.stackexchange.com/a/96594/24693.
	/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
	/// @return result The result as an unsigned 60.18-decimal fixed-point number.
	function exp2(uint256 x) internal pure returns (uint256 result) {
		unchecked {
			// Start from 0.5 in the 192.64-bit fixed-point format.
			result = 0x800000000000000000000000000000000000000000000000;

			// Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
			// because the initial result is 2^191 and all magic factors are less than 2^65.
			if (x & 0x8000000000000000 > 0) {
				result = (result * 0x16A09E667F3BCC909) >> 64;
			}
			if (x & 0x4000000000000000 > 0) {
				result = (result * 0x1306FE0A31B7152DF) >> 64;
			}
			if (x & 0x2000000000000000 > 0) {
				result = (result * 0x1172B83C7D517ADCE) >> 64;
			}
			if (x & 0x1000000000000000 > 0) {
				result = (result * 0x10B5586CF9890F62A) >> 64;
			}
			if (x & 0x800000000000000 > 0) {
				result = (result * 0x1059B0D31585743AE) >> 64;
			}
			if (x & 0x400000000000000 > 0) {
				result = (result * 0x102C9A3E778060EE7) >> 64;
			}
			if (x & 0x200000000000000 > 0) {
				result = (result * 0x10163DA9FB33356D8) >> 64;
			}
			if (x & 0x100000000000000 > 0) {
				result = (result * 0x100B1AFA5ABCBED61) >> 64;
			}
			if (x & 0x80000000000000 > 0) {
				result = (result * 0x10058C86DA1C09EA2) >> 64;
			}
			if (x & 0x40000000000000 > 0) {
				result = (result * 0x1002C605E2E8CEC50) >> 64;
			}
			if (x & 0x20000000000000 > 0) {
				result = (result * 0x100162F3904051FA1) >> 64;
			}
			if (x & 0x10000000000000 > 0) {
				result = (result * 0x1000B175EFFDC76BA) >> 64;
			}
			if (x & 0x8000000000000 > 0) {
				result = (result * 0x100058BA01FB9F96D) >> 64;
			}
			if (x & 0x4000000000000 > 0) {
				result = (result * 0x10002C5CC37DA9492) >> 64;
			}
			if (x & 0x2000000000000 > 0) {
				result = (result * 0x1000162E525EE0547) >> 64;
			}
			if (x & 0x1000000000000 > 0) {
				result = (result * 0x10000B17255775C04) >> 64;
			}
			if (x & 0x800000000000 > 0) {
				result = (result * 0x1000058B91B5BC9AE) >> 64;
			}
			if (x & 0x400000000000 > 0) {
				result = (result * 0x100002C5C89D5EC6D) >> 64;
			}
			if (x & 0x200000000000 > 0) {
				result = (result * 0x10000162E43F4F831) >> 64;
			}
			if (x & 0x100000000000 > 0) {
				result = (result * 0x100000B1721BCFC9A) >> 64;
			}
			if (x & 0x80000000000 > 0) {
				result = (result * 0x10000058B90CF1E6E) >> 64;
			}
			if (x & 0x40000000000 > 0) {
				result = (result * 0x1000002C5C863B73F) >> 64;
			}
			if (x & 0x20000000000 > 0) {
				result = (result * 0x100000162E430E5A2) >> 64;
			}
			if (x & 0x10000000000 > 0) {
				result = (result * 0x1000000B172183551) >> 64;
			}
			if (x & 0x8000000000 > 0) {
				result = (result * 0x100000058B90C0B49) >> 64;
			}
			if (x & 0x4000000000 > 0) {
				result = (result * 0x10000002C5C8601CC) >> 64;
			}
			if (x & 0x2000000000 > 0) {
				result = (result * 0x1000000162E42FFF0) >> 64;
			}
			if (x & 0x1000000000 > 0) {
				result = (result * 0x10000000B17217FBB) >> 64;
			}
			if (x & 0x800000000 > 0) {
				result = (result * 0x1000000058B90BFCE) >> 64;
			}
			if (x & 0x400000000 > 0) {
				result = (result * 0x100000002C5C85FE3) >> 64;
			}
			if (x & 0x200000000 > 0) {
				result = (result * 0x10000000162E42FF1) >> 64;
			}
			if (x & 0x100000000 > 0) {
				result = (result * 0x100000000B17217F8) >> 64;
			}
			if (x & 0x80000000 > 0) {
				result = (result * 0x10000000058B90BFC) >> 64;
			}
			if (x & 0x40000000 > 0) {
				result = (result * 0x1000000002C5C85FE) >> 64;
			}
			if (x & 0x20000000 > 0) {
				result = (result * 0x100000000162E42FF) >> 64;
			}
			if (x & 0x10000000 > 0) {
				result = (result * 0x1000000000B17217F) >> 64;
			}
			if (x & 0x8000000 > 0) {
				result = (result * 0x100000000058B90C0) >> 64;
			}
			if (x & 0x4000000 > 0) {
				result = (result * 0x10000000002C5C860) >> 64;
			}
			if (x & 0x2000000 > 0) {
				result = (result * 0x1000000000162E430) >> 64;
			}
			if (x & 0x1000000 > 0) {
				result = (result * 0x10000000000B17218) >> 64;
			}
			if (x & 0x800000 > 0) {
				result = (result * 0x1000000000058B90C) >> 64;
			}
			if (x & 0x400000 > 0) {
				result = (result * 0x100000000002C5C86) >> 64;
			}
			if (x & 0x200000 > 0) {
				result = (result * 0x10000000000162E43) >> 64;
			}
			if (x & 0x100000 > 0) {
				result = (result * 0x100000000000B1721) >> 64;
			}
			if (x & 0x80000 > 0) {
				result = (result * 0x10000000000058B91) >> 64;
			}
			if (x & 0x40000 > 0) {
				result = (result * 0x1000000000002C5C8) >> 64;
			}
			if (x & 0x20000 > 0) {
				result = (result * 0x100000000000162E4) >> 64;
			}
			if (x & 0x10000 > 0) {
				result = (result * 0x1000000000000B172) >> 64;
			}
			if (x & 0x8000 > 0) {
				result = (result * 0x100000000000058B9) >> 64;
			}
			if (x & 0x4000 > 0) {
				result = (result * 0x10000000000002C5D) >> 64;
			}
			if (x & 0x2000 > 0) {
				result = (result * 0x1000000000000162E) >> 64;
			}
			if (x & 0x1000 > 0) {
				result = (result * 0x10000000000000B17) >> 64;
			}
			if (x & 0x800 > 0) {
				result = (result * 0x1000000000000058C) >> 64;
			}
			if (x & 0x400 > 0) {
				result = (result * 0x100000000000002C6) >> 64;
			}
			if (x & 0x200 > 0) {
				result = (result * 0x10000000000000163) >> 64;
			}
			if (x & 0x100 > 0) {
				result = (result * 0x100000000000000B1) >> 64;
			}
			if (x & 0x80 > 0) {
				result = (result * 0x10000000000000059) >> 64;
			}
			if (x & 0x40 > 0) {
				result = (result * 0x1000000000000002C) >> 64;
			}
			if (x & 0x20 > 0) {
				result = (result * 0x10000000000000016) >> 64;
			}
			if (x & 0x10 > 0) {
				result = (result * 0x1000000000000000B) >> 64;
			}
			if (x & 0x8 > 0) {
				result = (result * 0x10000000000000006) >> 64;
			}
			if (x & 0x4 > 0) {
				result = (result * 0x10000000000000003) >> 64;
			}
			if (x & 0x2 > 0) {
				result = (result * 0x10000000000000001) >> 64;
			}
			if (x & 0x1 > 0) {
				result = (result * 0x10000000000000001) >> 64;
			}

			// We're doing two things at the same time:
			//
			//   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
			//      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
			//      rather than 192.
			//   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
			//
			// This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
			result *= SCALE;
			result >>= (191 - (x >> 64));
		}
	}

	/// @notice Finds the zero-based index of the first one in the binary representation of x.
	/// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
	/// @param x The uint256 number for which to find the index of the most significant bit.
	/// @return msb The index of the most significant bit as an uint256.
	function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
		if (x >= 2**128) {
			x >>= 128;
			msb += 128;
		}
		if (x >= 2**64) {
			x >>= 64;
			msb += 64;
		}
		if (x >= 2**32) {
			x >>= 32;
			msb += 32;
		}
		if (x >= 2**16) {
			x >>= 16;
			msb += 16;
		}
		if (x >= 2**8) {
			x >>= 8;
			msb += 8;
		}
		if (x >= 2**4) {
			x >>= 4;
			msb += 4;
		}
		if (x >= 2**2) {
			x >>= 2;
			msb += 2;
		}
		if (x >= 2**1) {
			// No need to shift x any more.
			msb += 1;
		}
	}

	/// @notice Calculates floor(x*y÷denominator) with full precision.
	///
	/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
	///
	/// Requirements:
	/// - The denominator cannot be zero.
	/// - The result must fit within uint256.
	///
	/// Caveats:
	/// - This function does not work with fixed-point numbers.
	///
	/// @param x The multiplicand as an uint256.
	/// @param y The multiplier as an uint256.
	/// @param denominator The divisor as an uint256.
	/// @return result The result as an uint256.
	function mulDiv(
		uint256 x,
		uint256 y,
		uint256 denominator
	) internal pure returns (uint256 result) {
		// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
		// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
		// variables such that product = prod1 * 2^256 + prod0.
		uint256 prod0; // Least significant 256 bits of the product
		uint256 prod1; // Most significant 256 bits of the product
		assembly {
			let mm := mulmod(x, y, not(0))
			prod0 := mul(x, y)
			prod1 := sub(sub(mm, prod0), lt(mm, prod0))
		}

		// Handle non-overflow cases, 256 by 256 division.
		if (prod1 == 0) {
			unchecked {
				result = prod0 / denominator;
			}
			return result;
		}

		// Make sure the result is less than 2^256. Also prevents denominator == 0.
		if (prod1 >= denominator) {
			revert PRBMath__MulDivOverflow(prod1, denominator);
		}

		///////////////////////////////////////////////
		// 512 by 256 division.
		///////////////////////////////////////////////

		// Make division exact by subtracting the remainder from [prod1 prod0].
		uint256 remainder;
		assembly {
			// Compute remainder using mulmod.
			remainder := mulmod(x, y, denominator)

			// Subtract 256 bit number from 512 bit number.
			prod1 := sub(prod1, gt(remainder, prod0))
			prod0 := sub(prod0, remainder)
		}

		// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
		// See https://cs.stackexchange.com/q/138556/92363.
		unchecked {
			// Does not overflow because the denominator cannot be zero at this stage in the function.
			uint256 lpotdod = denominator & (~denominator + 1);
			assembly {
				// Divide denominator by lpotdod.
				denominator := div(denominator, lpotdod)

				// Divide [prod1 prod0] by lpotdod.
				prod0 := div(prod0, lpotdod)

				// Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
				lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
			}

			// Shift in bits from prod1 into prod0.
			prod0 |= prod1 * lpotdod;

			// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
			// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
			// four bits. That is, denominator * inv = 1 mod 2^4.
			uint256 inverse = (3 * denominator) ^ 2;

			// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
			// in modular arithmetic, doubling the correct bits in each step.
			inverse *= 2 - denominator * inverse; // inverse mod 2^8
			inverse *= 2 - denominator * inverse; // inverse mod 2^16
			inverse *= 2 - denominator * inverse; // inverse mod 2^32
			inverse *= 2 - denominator * inverse; // inverse mod 2^64
			inverse *= 2 - denominator * inverse; // inverse mod 2^128
			inverse *= 2 - denominator * inverse; // inverse mod 2^256

			// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
			// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
			// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
			// is no longer required.
			result = prod0 * inverse;
			return result;
		}
	}

	/// @notice Calculates floor(x*y÷1e18) with full precision.
	///
	/// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
	/// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
	/// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
	///
	/// Requirements:
	/// - The result must fit within uint256.
	///
	/// Caveats:
	/// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
	/// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
	///     1. x * y = type(uint256).max * SCALE
	///     2. (x * y) % SCALE >= SCALE / 2
	///
	/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
	/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
	/// @return result The result as an unsigned 60.18-decimal fixed-point number.
	function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
		uint256 prod0;
		uint256 prod1;
		assembly {
			let mm := mulmod(x, y, not(0))
			prod0 := mul(x, y)
			prod1 := sub(sub(mm, prod0), lt(mm, prod0))
		}

		if (prod1 >= SCALE) {
			revert PRBMath__MulDivFixedPointOverflow(prod1);
		}

		uint256 remainder;
		uint256 roundUpUnit;
		assembly {
			remainder := mulmod(x, y, SCALE)
			roundUpUnit := gt(remainder, 499999999999999999)
		}

		if (prod1 == 0) {
			unchecked {
				result = (prod0 / SCALE) + roundUpUnit;
				return result;
			}
		}

		assembly {
			result := add(
				mul(
					or(
						div(sub(prod0, remainder), SCALE_LPOTD),
						mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
					),
					SCALE_INVERSE
				),
				roundUpUnit
			)
		}
	}

	/// @notice Calculates floor(x*y÷denominator) with full precision.
	///
	/// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
	///
	/// Requirements:
	/// - None of the inputs can be type(int256).min.
	/// - The result must fit within int256.
	///
	/// @param x The multiplicand as an int256.
	/// @param y The multiplier as an int256.
	/// @param denominator The divisor as an int256.
	/// @return result The result as an int256.
	function mulDivSigned(
		int256 x,
		int256 y,
		int256 denominator
	) internal pure returns (int256 result) {
		if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
			revert PRBMath__MulDivSignedInputTooSmall();
		}

		// Get hold of the absolute values of x, y and the denominator.
		uint256 ax;
		uint256 ay;
		uint256 ad;
		unchecked {
			ax = x < 0 ? uint256(-x) : uint256(x);
			ay = y < 0 ? uint256(-y) : uint256(y);
			ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
		}

		// Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
		uint256 rAbs = mulDiv(ax, ay, ad);
		if (rAbs > uint256(type(int256).max)) {
			revert PRBMath__MulDivSignedOverflow(rAbs);
		}

		// Get the signs of x, y and the denominator.
		uint256 sx;
		uint256 sy;
		uint256 sd;
		assembly {
			sx := sgt(x, sub(0, 1))
			sy := sgt(y, sub(0, 1))
			sd := sgt(denominator, sub(0, 1))
		}

		// XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
		// If yes, the result should be negative.
		result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
	}

	/// @notice Calculates the square root of x, rounding down.
	/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
	///
	/// Caveats:
	/// - This function does not work with fixed-point numbers.
	///
	/// @param x The uint256 number for which to calculate the square root.
	/// @return result The result as an uint256.
	function sqrt(uint256 x) internal pure returns (uint256 result) {
		if (x == 0) {
			return 0;
		}

		// Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
		uint256 xAux = uint256(x);
		result = 1;
		if (xAux >= 0x100000000000000000000000000000000) {
			xAux >>= 128;
			result <<= 64;
		}
		if (xAux >= 0x10000000000000000) {
			xAux >>= 64;
			result <<= 32;
		}
		if (xAux >= 0x100000000) {
			xAux >>= 32;
			result <<= 16;
		}
		if (xAux >= 0x10000) {
			xAux >>= 16;
			result <<= 8;
		}
		if (xAux >= 0x100) {
			xAux >>= 8;
			result <<= 4;
		}
		if (xAux >= 0x10) {
			xAux >>= 4;
			result <<= 2;
		}
		if (xAux >= 0x8) {
			result <<= 1;
		}

		// The operations can never overflow because the result is max 2^127 when it enters this block.
		unchecked {
			result = (result + x / result) >> 1;
			result = (result + x / result) >> 1;
			result = (result + x / result) >> 1;
			result = (result + x / result) >> 1;
			result = (result + x / result) >> 1;
			result = (result + x / result) >> 1;
			result = (result + x / result) >> 1; // Seven iterations should be enough
			uint256 roundedDownResult = x / result;
			return result >= roundedDownResult ? roundedDownResult : result;
		}
	}
}

File 5 of 8: PRBMathUD60x18.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
	/// @dev Half the SCALE number.
	uint256 internal constant HALF_SCALE = 5e17;

	/// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
	uint256 internal constant LOG2_E = 1_442695040888963407;

	/// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
	uint256 internal constant MAX_UD60x18 =
		115792089237316195423570985008687907853269984665640564039457_584007913129639935;

	/// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
	uint256 internal constant MAX_WHOLE_UD60x18 =
		115792089237316195423570985008687907853269984665640564039457_000000000000000000;

	/// @dev How many trailing decimals can be represented.
	uint256 internal constant SCALE = 1e18;

	/// @notice Calculates the arithmetic average of x and y, rounding down.
	/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
	/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
	/// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
	function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
		// The operations can never overflow.
		unchecked {
			// The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
			// to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
			result = (x >> 1) + (y >> 1) + (x & y & 1);
		}
	}

	/// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
	///
	/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
	/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
	///
	/// Requirements:
	/// - x must be less than or equal to MAX_WHOLE_UD60x18.
	///
	/// @param x The unsigned 60.18-decimal fixed-point number to ceil.
	/// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
	function ceil(uint256 x) internal pure returns (uint256 result) {
		if (x > MAX_WHOLE_UD60x18) {
			revert PRBMathUD60x18__CeilOverflow(x);
		}
		assembly {
			// Equivalent to "x % SCALE" but faster.
			let remainder := mod(x, SCALE)

			// Equivalent to "SCALE - remainder" but faster.
			let delta := sub(SCALE, remainder)

			// Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
			result := add(x, mul(delta, gt(remainder, 0)))
		}
	}

	/// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
	///
	/// @dev Uses mulDiv to enable overflow-safe multiplication and division.
	///
	/// Requirements:
	/// - The denominator cannot be zero.
	///
	/// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
	/// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
	/// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
	function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
		result = PRBMath.mulDiv(x, SCALE, y);
	}

	/// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
	/// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
	function e() internal pure returns (uint256 result) {
		result = 2_718281828459045235;
	}

	/// @notice Calculates the natural exponent of x.
	///
	/// @dev Based on the insight that e^x = 2^(x * log2(e)).
	///
	/// Requirements:
	/// - All from "log2".
	/// - x must be less than 133.084258667509499441.
	///
	/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
	/// @return result The result as an unsigned 60.18-decimal fixed-point number.
	function exp(uint256 x) internal pure returns (uint256 result) {
		// Without this check, the value passed to "exp2" would be greater than 192.
		if (x >= 133_084258667509499441) {
			revert PRBMathUD60x18__ExpInputTooBig(x);
		}

		// Do the fixed-point multiplication inline to save gas.
		unchecked {
			uint256 doubleScaleProduct = x * LOG2_E;
			result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
		}
	}

	/// @notice Calculates the binary exponent of x using the binary fraction method.
	///
	/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
	///
	/// Requirements:
	/// - x must be 192 or less.
	/// - The result must fit within MAX_UD60x18.
	///
	/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
	/// @return result The result as an unsigned 60.18-decimal fixed-point number.
	function exp2(uint256 x) internal pure returns (uint256 result) {
		// 2^192 doesn't fit within the 192.64-bit format used internally in this function.
		if (x >= 192e18) {
			revert PRBMathUD60x18__Exp2InputTooBig(x);
		}

		unchecked {
			// Convert x to the 192.64-bit fixed-point format.
			uint256 x192x64 = (x << 64) / SCALE;

			// Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
			result = PRBMath.exp2(x192x64);
		}
	}

	/// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
	/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
	/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
	/// @param x The unsigned 60.18-decimal fixed-point number to floor.
	/// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
	function floor(uint256 x) internal pure returns (uint256 result) {
		assembly {
			// Equivalent to "x % SCALE" but faster.
			let remainder := mod(x, SCALE)

			// Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
			result := sub(x, mul(remainder, gt(remainder, 0)))
		}
	}

	/// @notice Yields the excess beyond the floor of x.
	/// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
	/// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
	/// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
	function frac(uint256 x) internal pure returns (uint256 result) {
		assembly {
			result := mod(x, SCALE)
		}
	}

	/// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
	///
	/// @dev Requirements:
	/// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
	///
	/// @param x The basic integer to convert.
	/// @param result The same number in unsigned 60.18-decimal fixed-point representation.
	function fromUint(uint256 x) internal pure returns (uint256 result) {
		unchecked {
			if (x > MAX_UD60x18 / SCALE) {
				revert PRBMathUD60x18__FromUintOverflow(x);
			}
			result = x * SCALE;
		}
	}

	/// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
	///
	/// @dev Requirements:
	/// - x * y must fit within MAX_UD60x18, lest it overflows.
	///
	/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
	/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
	/// @return result The result as an unsigned 60.18-decimal fixed-point number.
	function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
		if (x == 0) {
			return 0;
		}

		unchecked {
			// Checking for overflow this way is faster than letting Solidity do it.
			uint256 xy = x * y;
			if (xy / x != y) {
				revert PRBMathUD60x18__GmOverflow(x, y);
			}

			// We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
			// during multiplication. See the comments within the "sqrt" function.
			result = PRBMath.sqrt(xy);
		}
	}

	/// @notice Calculates 1 / x, rounding toward zero.
	///
	/// @dev Requirements:
	/// - x cannot be zero.
	///
	/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
	/// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
	function inv(uint256 x) internal pure returns (uint256 result) {
		unchecked {
			// 1e36 is SCALE * SCALE.
			result = 1e36 / x;
		}
	}

	/// @notice Calculates the natural logarithm of x.
	///
	/// @dev Based on the insight that ln(x) = log2(x) / log2(e).
	///
	/// Requirements:
	/// - All from "log2".
	///
	/// Caveats:
	/// - All from "log2".
	/// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
	///
	/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
	/// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
	function ln(uint256 x) internal pure returns (uint256 result) {
		// Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
		// can return is 196205294292027477728.
		unchecked {
			result = (log2(x) * SCALE) / LOG2_E;
		}
	}

	/// @notice Calculates the common logarithm of x.
	///
	/// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
	/// logarithm based on the insight that log10(x) = log2(x) / log2(10).
	///
	/// Requirements:
	/// - All from "log2".
	///
	/// Caveats:
	/// - All from "log2".
	///
	/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
	/// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
	function log10(uint256 x) internal pure returns (uint256 result) {
		if (x < SCALE) {
			revert PRBMathUD60x18__LogInputTooSmall(x);
		}

		// Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
		// in this contract.
		// prettier-ignore
		assembly {
			switch x
			case 1 { result := mul(SCALE, sub(0, 18)) }
			case 10 { result := mul(SCALE, sub(1, 18)) }
			case 100 { result := mul(SCALE, sub(2, 18)) }
			case 1000 { result := mul(SCALE, sub(3, 18)) }
			case 10000 { result := mul(SCALE, sub(4, 18)) }
			case 100000 { result := mul(SCALE, sub(5, 18)) }
			case 1000000 { result := mul(SCALE, sub(6, 18)) }
			case 10000000 { result := mul(SCALE, sub(7, 18)) }
			case 100000000 { result := mul(SCALE, sub(8, 18)) }
			case 1000000000 { result := mul(SCALE, sub(9, 18)) }
			case 10000000000 { result := mul(SCALE, sub(10, 18)) }
			case 100000000000 { result := mul(SCALE, sub(11, 18)) }
			case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
			case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
			case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
			case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
			case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
			case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
			case 1000000000000000000 { result := 0 }
			case 10000000000000000000 { result := SCALE }
			case 100000000000000000000 { result := mul(SCALE, 2) }
			case 1000000000000000000000 { result := mul(SCALE, 3) }
			case 10000000000000000000000 { result := mul(SCALE, 4) }
			case 100000000000000000000000 { result := mul(SCALE, 5) }
			case 1000000000000000000000000 { result := mul(SCALE, 6) }
			case 10000000000000000000000000 { result := mul(SCALE, 7) }
			case 100000000000000000000000000 { result := mul(SCALE, 8) }
			case 1000000000000000000000000000 { result := mul(SCALE, 9) }
			case 10000000000000000000000000000 { result := mul(SCALE, 10) }
			case 100000000000000000000000000000 { result := mul(SCALE, 11) }
			case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
			case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
			case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
			case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
			case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
			case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
			case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
			case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
			case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
			case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
			case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
			case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
			case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
			case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
			case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
			case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
			case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
			case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
			case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
			case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
			case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
			case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
			case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
			case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
			case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
			case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
			case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
			case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
			case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
			case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
			case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
			case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
			case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
			case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
			case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
			case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
			case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
			case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
			case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
			case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
			case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
			case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
			case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
			case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
			case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
			case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
			case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
			case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
			default {
				result := MAX_UD60x18
			}
		}

		if (result == MAX_UD60x18) {
			// Do the fixed-point division inline to save gas. The denominator is log2(10).
			unchecked {
				result = (log2(x) * SCALE) / 3_321928094887362347;
			}
		}
	}

	/// @notice Calculates the binary logarithm of x.
	///
	/// @dev Based on the iterative approximation algorithm.
	/// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
	///
	/// Requirements:
	/// - x must be greater than or equal to SCALE, otherwise the result would be negative.
	///
	/// Caveats:
	/// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
	///
	/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
	/// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
	function log2(uint256 x) internal pure returns (uint256 result) {
		if (x < SCALE) {
			revert PRBMathUD60x18__LogInputTooSmall(x);
		}
		unchecked {
			// Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
			uint256 n = PRBMath.mostSignificantBit(x / SCALE);

			// The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
			// because n is maximum 255 and SCALE is 1e18.
			result = n * SCALE;

			// This is y = x * 2^(-n).
			uint256 y = x >> n;

			// If y = 1, the fractional part is zero.
			if (y == SCALE) {
				return result;
			}

			// Calculate the fractional part via the iterative approximation.
			// The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
			for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
				y = (y * y) / SCALE;

				// Is y^2 > 2 and so in the range [2,4)?
				if (y >= 2 * SCALE) {
					// Add the 2^(-m) factor to the logarithm.
					result += delta;

					// Corresponds to z/2 on Wikipedia.
					y >>= 1;
				}
			}
		}
	}

	/// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
	/// fixed-point number.
	/// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
	/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
	/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
	/// @return result The product as an unsigned 60.18-decimal fixed-point number.
	function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
		result = PRBMath.mulDivFixedPoint(x, y);
	}

	/// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
	function pi() internal pure returns (uint256 result) {
		result = 3_141592653589793238;
	}

	/// @notice Raises x to the power of y.
	///
	/// @dev Based on the insight that x^y = 2^(log2(x) * y).
	///
	/// Requirements:
	/// - All from "exp2", "log2" and "mul".
	///
	/// Caveats:
	/// - All from "exp2", "log2" and "mul".
	/// - Assumes 0^0 is 1.
	///
	/// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
	/// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
	/// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
	function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
		if (x == 0) {
			result = y == 0 ? SCALE : uint256(0);
		} else {
			result = exp2(mul(log2(x), y));
		}
	}

	/// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
	/// famous algorithm "exponentiation by squaring".
	///
	/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
	///
	/// Requirements:
	/// - The result must fit within MAX_UD60x18.
	///
	/// Caveats:
	/// - All from "mul".
	/// - Assumes 0^0 is 1.
	///
	/// @param x The base as an unsigned 60.18-decimal fixed-point number.
	/// @param y The exponent as an uint256.
	/// @return result The result as an unsigned 60.18-decimal fixed-point number.
	function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
		// Calculate the first iteration of the loop in advance.
		result = y & 1 > 0 ? x : SCALE;

		// Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
		for (y >>= 1; y > 0; y >>= 1) {
			x = PRBMath.mulDivFixedPoint(x, x);

			// Equivalent to "y % 2 == 1" but faster.
			if (y & 1 > 0) {
				result = PRBMath.mulDivFixedPoint(result, x);
			}
		}
	}

	/// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
	function scale() internal pure returns (uint256 result) {
		result = SCALE;
	}

	/// @notice Calculates the square root of x, rounding down.
	/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
	///
	/// Requirements:
	/// - x must be less than MAX_UD60x18 / SCALE.
	///
	/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
	/// @return result The result as an unsigned 60.18-decimal fixed-point .
	function sqrt(uint256 x) internal pure returns (uint256 result) {
		unchecked {
			if (x > MAX_UD60x18 / SCALE) {
				revert PRBMathUD60x18__SqrtOverflow(x);
			}
			// Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
			// 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
			result = PRBMath.sqrt(x * SCALE);
		}
	}

	/// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
	/// @param x The unsigned 60.18-decimal fixed-point number to convert.
	/// @return result The same number in basic integer form.
	function toUint(uint256 x) internal pure returns (uint256 result) {
		unchecked {
			result = x / SCALE;
		}
	}
}

File 6 of 8: StakingRewards.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;

import "./WTF.sol";
import "./ERC20.sol";
import "./PRBMathUD60x18.sol";

contract StakingRewards {

	using PRBMathUD60x18 for uint256;

	uint256 constant private FLOAT_SCALAR = 2**64;
	uint256 constant private PERCENT_FEE = 5; // only for WTF staking
	uint256 constant private X_TICK = 30 days;

	struct User {
		uint256 deposited;
		int256 scaledPayout;
	}

	struct Info {
		uint256 totalRewards;
		uint256 startTime;
		uint256 lastUpdated;
		uint256 pendingFee;
		uint256 scaledRewardsPerToken;
		uint256 totalDeposited;
		mapping(address => User) users;
		WTF wtf;
		ERC20 token;
	}
	Info private info;


	event Deposit(address indexed user, uint256 amount, uint256 fee);
	event Withdraw(address indexed user, uint256 amount, uint256 fee);
	event Claim(address indexed user, uint256 amount);
	event Reinvest(address indexed user, uint256 amount);
	event Reward(uint256 amount);


	constructor(uint256 _totalRewards, uint256 _stakingRewardsStart, ERC20 _token) {
		info.totalRewards = _totalRewards;
		info.startTime = block.timestamp < _stakingRewardsStart ? _stakingRewardsStart : block.timestamp;
		info.lastUpdated = startTime();
		info.wtf = WTF(msg.sender);
		info.token = _token;
	}

	function update() public {
		uint256 _now = block.timestamp;
		if (_now > info.lastUpdated && totalDeposited() > 0) {
			uint256 _reward = info.totalRewards.mul(_delta(_getX(info.lastUpdated), _getX(_now)));
			if (info.pendingFee > 0) {
				_reward += info.pendingFee;
				info.pendingFee = 0;
			}
			uint256 _balanceBefore = info.wtf.balanceOf(address(this));
			info.wtf.claimRewards();
			_reward += info.wtf.balanceOf(address(this)) - _balanceBefore;
			info.lastUpdated = _now;
			_disburse(_reward);
		}
	}

	function deposit(uint256 _amount) external {
		depositFor(msg.sender, _amount);
	}

	function depositFor(address _user, uint256 _amount) public {
		require(_amount > 0);
		update();
		uint256 _balanceBefore = info.token.balanceOf(address(this));
		info.token.transferFrom(msg.sender, address(this), _amount);
		uint256 _amountReceived = info.token.balanceOf(address(this)) - _balanceBefore;
		_deposit(_user, _amountReceived);
	}

	function tokenCallback(address _from, uint256 _tokens, bytes calldata) external returns (bool) {
		require(_isWTF() && msg.sender == tokenAddress());
		require(_tokens > 0);
		update();
		_deposit(_from, _tokens);
		return true;
	}

	function disburse(uint256 _amount) public {
		require(_amount > 0);
		update();
		uint256 _balanceBefore = info.wtf.balanceOf(address(this));
		info.wtf.transferFrom(msg.sender, address(this), _amount);
		uint256 _amountReceived = info.wtf.balanceOf(address(this)) - _balanceBefore;
		_processFee(_amountReceived);
	}

	function withdrawAll() public {
		uint256 _deposited = depositedOf(msg.sender);
		if (_deposited > 0) {
			withdraw(_deposited);
		}
	}

	function withdraw(uint256 _amount) public {
		require(_amount > 0 && _amount <= depositedOf(msg.sender));
		update();
		info.totalDeposited -= _amount;
		info.users[msg.sender].deposited -= _amount;
		info.users[msg.sender].scaledPayout -= int256(_amount * info.scaledRewardsPerToken);
		uint256 _fee = _calculateFee(_amount);
		info.token.transfer(msg.sender, _amount - _fee);
		_processFee(_fee);
		emit Withdraw(msg.sender, _amount, _fee);
	}

	function claim() public {
		update();
		uint256 _rewards = rewardsOf(msg.sender);
		if (_rewards > 0) {
			info.users[msg.sender].scaledPayout += int256(_rewards * FLOAT_SCALAR);
			info.wtf.transfer(msg.sender, _rewards);
			emit Claim(msg.sender, _rewards);
		}
	}

	function reinvest() public {
		require(_isWTF());
		update();
		uint256 _rewards = rewardsOf(msg.sender);
		if (_rewards > 0) {
			info.users[msg.sender].scaledPayout += int256(_rewards * FLOAT_SCALAR);
			_deposit(msg.sender, _rewards);
			emit Reinvest(msg.sender, _rewards);
		}
	}

	
	function wtfAddress() public view returns (address) {
		return address(info.wtf);
	}
	
	function tokenAddress() public view returns (address) {
		return address(info.token);
	}

	function startTime() public view returns (uint256) {
		return info.startTime;
	}

	function totalDeposited() public view returns (uint256) {
		return info.totalDeposited;
	}

	function depositedOf(address _user) public view returns (uint256) {
		return info.users[_user].deposited;
	}
	
	function rewardsOf(address _user) public view returns (uint256) {
		return uint256(int256(info.scaledRewardsPerToken * depositedOf(_user)) - info.users[_user].scaledPayout) / FLOAT_SCALAR;
	}
	
	function currentRatePerDay() public view returns (uint256) {
		if (block.timestamp < startTime()) {
			return info.totalRewards.mul(_delta(_getX(startTime()), _getX(startTime() + 24 hours)));
		} else {
			return info.totalRewards.mul(_delta(_getX(block.timestamp), _getX(block.timestamp + 24 hours)));
		}
	}

	function totalDistributed() public view returns (uint256) {
		return info.totalRewards.mul(_sum(_getX(block.timestamp)));
	}

	function allInfoFor(address _user) external view returns (uint256 startingTime, uint256 totalRewardsDistributed, uint256 rewardsRatePerDay, uint256 currentFeePercent, uint256 totalTokensDeposited, uint256 virtualRewards, uint256 userWTF, uint256 userBalance, uint256 userAllowance, uint256 userDeposited, uint256 userRewards) {
		startingTime = startTime();
		totalRewardsDistributed = totalDistributed();
		rewardsRatePerDay = currentRatePerDay();
		currentFeePercent = _calculateFee(1e20);
		totalTokensDeposited = totalDeposited();
		virtualRewards = block.timestamp > info.lastUpdated ? info.totalRewards.mul(_delta(_getX(info.lastUpdated), _getX(block.timestamp))) : 0;
		userWTF = info.wtf.balanceOf(_user);
		userBalance = info.token.balanceOf(_user);
		userAllowance = info.token.allowance(_user, address(this));
		userDeposited = depositedOf(_user);
		userRewards = rewardsOf(_user);
	}

	
	function _deposit(address _user, uint256 _amount) internal {
		uint256 _fee = _calculateFee(_amount);
		uint256 _deposited = _amount - _fee;
		info.totalDeposited += _deposited;
		info.users[_user].deposited += _deposited;
		info.users[_user].scaledPayout += int256(_deposited * info.scaledRewardsPerToken);
		_processFee(_fee);
		emit Deposit(_user, _amount, _fee);
	}
	
	function _processFee(uint256 _fee) internal {
		if (_fee > 0) {
			if (block.timestamp < startTime() || totalDeposited() == 0) {
				info.pendingFee += _fee;
			} else {
				_disburse(_fee);
			}
		}
	}

	function _disburse(uint256 _amount) internal {
		info.scaledRewardsPerToken += _amount * FLOAT_SCALAR / totalDeposited();
		emit Reward(_amount);
	}


	function _isWTF() internal view returns (bool) {
		return wtfAddress() == tokenAddress();
	}

	function _calculateFee(uint256 _amount) internal view returns (uint256) {
		return _isWTF() ? (_amount * PERCENT_FEE / 100).mul(1e18 - _sum(_getX(block.timestamp))) : 0;
	}
	
	function _getX(uint256 t) internal view returns (uint256) {
		uint256 _start = startTime();
		if (t < _start) {
			return 0;
		} else {
			return ((t - _start) * 1e18).div(X_TICK * 1e18);
		}
	}

	function _sum(uint256 x) internal pure returns (uint256) {
		uint256 _e2x = x.exp2();
		return (_e2x - 1e18).div(_e2x);
	}

	function _delta(uint256 x1, uint256 x2) internal pure returns (uint256) {
		require(x2 >= x1);
		return _sum(x2) - _sum(x1);
	}
}

File 7 of 8: WTF.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;

import "./WTFNFT.sol";
import "./Treasury.sol";
import "./StakingRewards.sol";

interface Callable {
	function tokenCallback(address _from, uint256 _tokens, bytes calldata _data) external returns (bool);
}

interface Router {
	function WETH() external pure returns (address);
	function factory() external pure returns (address);
}

interface Factory {
	function createPair(address, address) external returns (address);
}

interface Pair {
	function token0() external view returns (address);
	function totalSupply() external view returns (uint256);
	function balanceOf(address) external view returns (uint256);
	function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
}


contract WTF {

	uint256 constant private FLOAT_SCALAR = 2**64;
	uint256 constant private UINT_MAX = type(uint256).max;
	uint256 constant private TRANSFER_FEE_SCALE = 1000; // 1 = 0.1%
	uint256 constant private WTF_STAKING_SUPPLY = 2e25; // 20M WTF
	uint256 constant private LP_STAKING_SUPPLY = 4e25; // 40M WTF
	uint256 constant private TREASURY_SUPPLY = 4e25; // 40M WTF
	uint256 constant private BASE_UPGRADE_COST = 1e19; // 10 WTF
	uint256 constant private SERVICE_FEE = 0.01 ether;

	string constant public name = "fees.wtf";
	string constant public symbol = "WTF";
	uint8 constant public decimals = 18;

	struct User {
		uint256 balance;
		mapping(address => uint256) allowance;
		int256 scaledPayout;
		uint256 reflinkLevel;
		bool unlocked;
	}

	struct Info {
		bytes32 merkleRoot;
		uint256 openingTime;
		uint256 closingTime;
		uint256 totalSupply;
		uint256 scaledRewardsPerToken;
		mapping(uint256 => uint256) claimedWTFBitMap;
		mapping(uint256 => uint256) claimedNFTBitMap;
		mapping(address => User) users;
		mapping(address => bool) toWhitelist;
		mapping(address => bool) fromWhitelist;
		address owner;
		Router router;
		Pair pair;
		bool weth0;
		WTFNFT nft;
		TeamReferral team;
		Treasury treasury;
		StakingRewards stakingRewards;
		StakingRewards lpStakingRewards;
		address feeManager;
		uint256 transferFee;
		uint256 feeManagerPercent;
	}
	Info private info;


	event Transfer(address indexed from, address indexed to, uint256 tokens);
	event Approval(address indexed owner, address indexed spender, uint256 tokens);
	event WhitelistUpdated(address indexed user, bool fromWhitelisted, bool toWhitelisted);
	event ReflinkRewards(address indexed referrer, uint256 amount);
	event ClaimRewards(address indexed user, uint256 amount);
	event Reward(uint256 amount);

	modifier _onlyOwner() {
		require(msg.sender == owner());
		_;
	}


	constructor(bytes32 _merkleRoot, uint256 _openingTime, uint256 _stakingRewardsStart) {
		info.merkleRoot = _merkleRoot;
		info.openingTime = block.timestamp < _openingTime ? _openingTime : block.timestamp;
		info.closingTime = openingTime() + 30 days;
		info.router = Router(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
		info.pair = Pair(Factory(info.router.factory()).createPair(info.router.WETH(), address(this)));
		info.weth0 = info.pair.token0() == info.router.WETH();
		info.transferFee = 40; // 4%
		info.feeManagerPercent = 25; // 25%
		info.owner = 0x65dd4990719bE9B20322e4E8D3Bd77a4401a0357;
		info.nft = new WTFNFT();
		info.team = new TeamReferral();
		info.treasury = new Treasury();
		_mint(treasuryAddress(), TREASURY_SUPPLY);
		info.stakingRewards = new StakingRewards(WTF_STAKING_SUPPLY, _stakingRewardsStart, ERC20(address(this)));
		_mint(stakingRewardsAddress(), WTF_STAKING_SUPPLY);
		info.lpStakingRewards = new StakingRewards(LP_STAKING_SUPPLY, _stakingRewardsStart, ERC20(pairAddress()));
		_mint(lpStakingRewardsAddress(), LP_STAKING_SUPPLY);
		info.feeManager = address(new FeeManager());
		_approve(feeManagerAddress(), stakingRewardsAddress(), UINT_MAX);
		_approve(feeManagerAddress(), lpStakingRewardsAddress(), UINT_MAX);
	}

	function setOwner(address _owner) external _onlyOwner {
		info.owner = _owner;
	}

	function setFeeManager(address _feeManager) external _onlyOwner {
		info.feeManager = _feeManager;
	}

	function setClosingTime(uint256 _closingTime) external _onlyOwner {
		info.closingTime = _closingTime;
	}

	function setTransferFee(uint256 _transferFee) external _onlyOwner {
		require(_transferFee <= 100); // ≤10%
		info.transferFee = _transferFee;
	}

	function setFeeManagerPercent(uint256 _feeManagerPercent) external _onlyOwner {
		require(_feeManagerPercent <= 100);
		info.feeManagerPercent = _feeManagerPercent;
	}

	function setWhitelisted(address _address, bool _fromWhitelisted, bool _toWhitelisted) external _onlyOwner {
		info.fromWhitelist[_address] = _fromWhitelisted;
		info.toWhitelist[_address] = _toWhitelisted;
		emit WhitelistUpdated(_address, _fromWhitelisted, _toWhitelisted);
	}


	function disburse(uint256 _amount) external {
		require(_amount > 0);
		uint256 _balanceBefore = balanceOf(address(this));
		_transfer(msg.sender, address(this), _amount);
		uint256 _amountReceived = balanceOf(address(this)) - _balanceBefore;
		_disburse(_amountReceived);
	}

	function sweep() external {
		if (address(this).balance > 0) {
			teamAddress().transfer(address(this).balance);
		}
	}

	function upgradeReflink(uint256 _toLevel) external {
		uint256 _currentLevel = reflinkLevel(msg.sender);
		require(_currentLevel < _toLevel);
		uint256 _totalCost = 0;
		for (uint256 i = _currentLevel; i < _toLevel; i++) {
			_totalCost += upgradeCost(i);
		}
		burn(_totalCost);
		info.users[msg.sender].reflinkLevel = _toLevel;
	}

	function unlock(address _account, address payable _referrer) external payable {
		require(block.timestamp < closingTime());
		require(!isUnlocked(_account));
		require(msg.value == SERVICE_FEE);
		uint256 _refFee = 0;
		if (_referrer != address(0x0)) {
			_refFee = SERVICE_FEE * reflinkPercent(_referrer) / 100;
			!_referrer.send(_refFee);
			emit ReflinkRewards(_referrer, _refFee);
		}
		uint256 _remaining = SERVICE_FEE - _refFee;
		teamAddress().transfer(_remaining);
		emit ReflinkRewards(teamAddress(), _remaining);
		info.users[_account].unlocked = true;
	}
	
	function claim(address _account, uint256[9] calldata _data, bytes32[] calldata _proof) external {
		// Data array in format: (index, amount, totalFees, failFees, totalGas, avgGwei, totalDonated, totalTxs, failTxs)
		claimWTF(_account, _data, _proof);
		claimNFT(_account, _data, _proof);
	}
	
	function claimWTF(address _account, uint256[9] calldata _data, bytes32[] calldata _proof) public {
		require(isOpen());
		require(isUnlocked(_account));
		uint256 _index = _data[0];
		uint256 _amount = _data[1];
		require(!isClaimedWTF(_index));
		require(_verify(_proof, keccak256(abi.encodePacked(_account, _data))));
		uint256 _claimedWordIndex = _index / 256;
		uint256 _claimedBitIndex = _index % 256;
		info.claimedWTFBitMap[_claimedWordIndex] = info.claimedWTFBitMap[_claimedWordIndex] | (1 << _claimedBitIndex);
		_mint(_account, _amount);
	}

	function claimNFT(address _account, uint256[9] calldata _data, bytes32[] calldata _proof) public {
		require(isOpen());
		require(isUnlocked(_account));
		uint256 _index = _data[0];
		require(!isClaimedNFT(_index));
		require(_verify(_proof, keccak256(abi.encodePacked(_account, _data))));
		uint256 _claimedWordIndex = _index / 256;
		uint256 _claimedBitIndex = _index % 256;
		info.claimedNFTBitMap[_claimedWordIndex] = info.claimedNFTBitMap[_claimedWordIndex] | (1 << _claimedBitIndex);
		info.nft.mint(_account, _data[2], _data[3], _data[4], _data[5], _data[6], _data[7], _data[8]);
	}

	function claimRewards() external {
		boostRewards();
		uint256 _rewards = rewardsOf(msg.sender);
		if (_rewards > 0) {
			info.users[msg.sender].scaledPayout += int256(_rewards * FLOAT_SCALAR);
			_transfer(address(this), msg.sender, _rewards);
			emit ClaimRewards(msg.sender, _rewards);
		}
	}

	function boostRewards() public {
		address _this = address(this);
		uint256 _rewards = rewardsOf(_this);
		if (_rewards > 0) {
			info.users[_this].scaledPayout += int256(_rewards * FLOAT_SCALAR);
			_disburse(_rewards);
			emit ClaimRewards(_this, _rewards);
		}
	}

	function burn(uint256 _tokens) public {
		require(balanceOf(msg.sender) >= _tokens);
		info.totalSupply -= _tokens;
		info.users[msg.sender].balance -= _tokens;
		info.users[msg.sender].scaledPayout -= int256(_tokens * info.scaledRewardsPerToken);
		emit Transfer(msg.sender, address(0x0), _tokens);
	}

	function transfer(address _to, uint256 _tokens) external returns (bool) {
		return _transfer(msg.sender, _to, _tokens);
	}

	function approve(address _spender, uint256 _tokens) external returns (bool) {
		return _approve(msg.sender, _spender, _tokens);
	}

	function transferFrom(address _from, address _to, uint256 _tokens) external returns (bool) {
		uint256 _allowance = allowance(_from, msg.sender);
		require(_allowance >= _tokens);
		if (_allowance != UINT_MAX) {
			info.users[_from].allowance[msg.sender] -= _tokens;
		}
		return _transfer(_from, _to, _tokens);
	}

	function transferAndCall(address _to, uint256 _tokens, bytes calldata _data) external returns (bool) {
		uint256 _balanceBefore = balanceOf(_to);
		_transfer(msg.sender, _to, _tokens);
		uint256 _tokensReceived = balanceOf(_to) - _balanceBefore;
		uint32 _size;
		assembly {
			_size := extcodesize(_to)
		}
		if (_size > 0) {
			require(Callable(_to).tokenCallback(msg.sender, _tokensReceived, _data));
		}
		return true;
	}
	

	function pairAddress() public view returns (address) {
		return address(info.pair);
	}

	function nftAddress() external view returns (address) {
		return address(info.nft);
	}

	function teamAddress() public view returns (address payable) {
		return payable(address(info.team));
	}

	function treasuryAddress() public view returns (address) {
		return address(info.treasury);
	}

	function stakingRewardsAddress() public view returns (address) {
		return address(info.stakingRewards);
	}

	function lpStakingRewardsAddress() public view returns (address) {
		return address(info.lpStakingRewards);
	}

	function feeManagerAddress() public view returns (address) {
		return info.feeManager;
	}

	function owner() public view returns (address) {
		return info.owner;
	}

	function transferFee() public view returns (uint256) {
		return info.transferFee;
	}

	function feeManagerPercent() public view returns (uint256) {
		return info.feeManagerPercent;
	}

	function isFromWhitelisted(address _address) public view returns (bool) {
		return info.fromWhitelist[_address];
	}

	function isToWhitelisted(address _address) public view returns (bool) {
		return info.toWhitelist[_address];
	}

	function merkleRoot() public view returns (bytes32) {
		return info.merkleRoot;
	}

	function openingTime() public view returns (uint256) {
		return info.openingTime;
	}

	function closingTime() public view returns (uint256) {
		return info.closingTime;
	}

	function isOpen() public view returns (bool) {
		return block.timestamp > openingTime() && block.timestamp < closingTime();
	}

	function isUnlocked(address _user) public view returns (bool) {
		return info.users[_user].unlocked;
	}

	function isClaimedWTF(uint256 _index) public view returns (bool) {
		uint256 _claimedWordIndex = _index / 256;
		uint256 _claimedBitIndex = _index % 256;
		uint256 _claimedWord = info.claimedWTFBitMap[_claimedWordIndex];
		uint256 _mask = (1 << _claimedBitIndex);
		return _claimedWord & _mask == _mask;
	}

	function isClaimedNFT(uint256 _index) public view returns (bool) {
		uint256 _claimedWordIndex = _index / 256;
		uint256 _claimedBitIndex = _index % 256;
		uint256 _claimedWord = info.claimedNFTBitMap[_claimedWordIndex];
		uint256 _mask = (1 << _claimedBitIndex);
		return _claimedWord & _mask == _mask;
	}
	
	function totalSupply() public view returns (uint256) {
		return info.totalSupply;
	}

	function balanceOf(address _user) public view returns (uint256) {
		return info.users[_user].balance;
	}

	function rewardsOf(address _user) public view returns (uint256) {
		return uint256(int256(info.scaledRewardsPerToken * balanceOf(_user)) - info.users[_user].scaledPayout) / FLOAT_SCALAR;
	}

	function allowance(address _user, address _spender) public view returns (uint256) {
		return info.users[_user].allowance[_spender];
	}

	function reflinkLevel(address _user) public view returns (uint256) {
		return info.users[_user].reflinkLevel;
	}

	function reflinkPercent(address _user) public view returns (uint256) {
		return 10 * (reflinkLevel(_user) + 1);
	}

	function upgradeCost(uint256 _reflinkLevel) public pure returns (uint256) {
		require(_reflinkLevel < 4);
		return BASE_UPGRADE_COST * 10**_reflinkLevel;
	}

	function reflinkInfoFor(address _user) external view returns (uint256 balance, uint256 level, uint256 percent) {
		return (balanceOf(_user), reflinkLevel(_user), reflinkPercent(_user));
	}

	function claimInfoFor(uint256 _index, address _user) external view returns (uint256 openTime, uint256 closeTime, bool unlocked, bool claimedWTF, bool claimedNFT, uint256 wethReserve, uint256 wtfReserve) {
		openTime = openingTime();
		closeTime = closingTime();
		unlocked = isUnlocked(_user);
		claimedWTF = isClaimedWTF(_index);
		claimedNFT = isClaimedNFT(_index);
		( , , wethReserve, wtfReserve, , , ) = allInfoFor(address(0x0));
	}

	function allInfoFor(address _user) public view returns (uint256 totalTokens, uint256 totalLPTokens, uint256 wethReserve, uint256 wtfReserve, uint256 userBalance, uint256 userRewards, uint256 userLPBalance) {
		totalTokens = totalSupply();
		totalLPTokens = info.pair.totalSupply();
		(uint256 _res0, uint256 _res1, ) = info.pair.getReserves();
		wethReserve = info.weth0 ? _res0 : _res1;
		wtfReserve = info.weth0 ? _res1 : _res0;
		userBalance = balanceOf(_user);
		userRewards = rewardsOf(_user);
		userLPBalance = info.pair.balanceOf(_user);
	}


	function _mint(address _account, uint256 _amount) internal {
		info.totalSupply += _amount;
		info.users[_account].balance += _amount;
		info.users[_account].scaledPayout += int256(_amount * info.scaledRewardsPerToken);
		emit Transfer(address(0x0), _account, _amount);
	}
	
	function _approve(address _owner, address _spender, uint256 _tokens) internal returns (bool) {
		info.users[_owner].allowance[_spender] = _tokens;
		emit Approval(_owner, _spender, _tokens);
		return true;
	}
	
	function _transfer(address _from, address _to, uint256 _tokens) internal returns (bool) {
		require(balanceOf(_from) >= _tokens);
		info.users[_from].balance -= _tokens;
		info.users[_from].scaledPayout -= int256(_tokens * info.scaledRewardsPerToken);
		uint256 _fee = 0;
		if (!_isExcludedFromFee(_from, _to)) {
			_fee = _tokens * transferFee() / TRANSFER_FEE_SCALE;
			address _this = address(this);
			info.users[_this].balance += _fee;
			info.users[_this].scaledPayout += int256(_fee * info.scaledRewardsPerToken);
			emit Transfer(_from, _this, _fee);
		}
		uint256 _transferred = _tokens - _fee;
		info.users[_to].balance += _transferred;
		info.users[_to].scaledPayout += int256(_transferred * info.scaledRewardsPerToken);
		emit Transfer(_from, _to, _transferred);
		if (_fee > 0) {
			uint256 _feeManagerRewards = _fee * feeManagerPercent() / 100;
			info.users[feeManagerAddress()].scaledPayout -= int256(_feeManagerRewards * FLOAT_SCALAR);
			_disburse(_fee - _feeManagerRewards);
		}
		return true;
	}

	function _disburse(uint256 _amount) internal {
		if (_amount > 0) {
			info.scaledRewardsPerToken += _amount * FLOAT_SCALAR / totalSupply();
			emit Reward(_amount);
		}
	}


	function _isExcludedFromFee(address _from, address _to) internal view returns (bool) {
		return isFromWhitelisted(_from) || isToWhitelisted(_to)
			|| _from == address(this) || _to == address(this)
			|| _from == feeManagerAddress() || _to == feeManagerAddress()
			|| _from == treasuryAddress() || _to == treasuryAddress()
			|| _from == stakingRewardsAddress() || _to == stakingRewardsAddress()
			|| _from == lpStakingRewardsAddress() || _to == lpStakingRewardsAddress();
	}
	
	function _verify(bytes32[] memory _proof, bytes32 _leaf) internal view returns (bool) {
		bytes32 _computedHash = _leaf;
		for (uint256 i = 0; i < _proof.length; i++) {
			bytes32 _proofElement = _proof[i];
			if (_computedHash <= _proofElement) {
				_computedHash = keccak256(abi.encodePacked(_computedHash, _proofElement));
			} else {
				_computedHash = keccak256(abi.encodePacked(_proofElement, _computedHash));
			}
		}
		return _computedHash == merkleRoot();
	}
}

File 8 of 8: WTFNFT.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;

import "./Metadata.sol";

interface Receiver {
	function onERC721Received(address _operator, address _from, uint256 _tokenId, bytes calldata _data) external returns (bytes4);
}


contract WTFNFT {

	struct User {
		uint256 balance;
		mapping(uint256 => uint256) list;
		mapping(address => bool) approved;
		mapping(uint256 => uint256) indexOf;
		uint256 tokenIndex;
	}

	struct Token {
		address user;
		address owner;
		address approved;
		uint128 totalFees;
		uint128 failFees;
		uint128 totalGas;
		uint128 avgGwei;
		uint128 totalDonated;
		uint64 totalTxs;
		uint64 failTxs;
	}

	struct Info {
		uint256 totalSupply;
		mapping(uint256 => Token) list;
		mapping(address => User) users;
		Metadata metadata;
		address wtf;
		address owner;
	}
	Info private info;

	mapping(bytes4 => bool) public supportsInterface;

	event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
	event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
	event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
	event Mint(address indexed owner, uint256 indexed tokenId, uint256 totalFees, uint256 failFees, uint256 totalGas, uint256 avgGwei, uint256 totalDonated, uint256 totalTxs, uint256 failTxs);


	modifier _onlyOwner() {
		require(msg.sender == owner());
		_;
	}


	constructor() {
		info.metadata = new Metadata(this);
		info.wtf = msg.sender;
		info.owner = 0xdEE79eD62B42e30EA7EbB6f1b7A3f04143D18b7F;
		supportsInterface[0x01ffc9a7] = true; // ERC-165
		supportsInterface[0x80ac58cd] = true; // ERC-721
		supportsInterface[0x5b5e139f] = true; // Metadata
		supportsInterface[0x780e9d63] = true; // Enumerable
	}

	function setOwner(address _owner) external _onlyOwner {
		info.owner = _owner;
	}

	function setMetadata(Metadata _metadata) external _onlyOwner {
		info.metadata = _metadata;
	}

	
	function mint(address _receiver, uint256 _totalFees, uint256 _failFees, uint256 _totalGas, uint256 _avgGwei, uint256 _totalDonated, uint256 _totalTxs, uint256 _failTxs) public {
		require(msg.sender == wtfAddress());
		uint256 _tokenId = info.totalSupply++;
		info.users[_receiver].tokenIndex = totalSupply();
		Token storage _newToken = info.list[_tokenId];
		_newToken.user = _receiver;
		_newToken.owner = _receiver;
		_newToken.totalFees = uint128(_totalFees);
		_newToken.failFees = uint128(_failFees);
		_newToken.totalGas = uint128(_totalGas);
		_newToken.avgGwei = uint128(_avgGwei);
		_newToken.totalDonated = uint128(_totalDonated);
		_newToken.totalTxs = uint64(_totalTxs);
		_newToken.failTxs = uint64(_failTxs);
		uint256 _index = info.users[_receiver].balance++;
		info.users[_receiver].indexOf[_tokenId] = _index + 1;
		info.users[_receiver].list[_index] = _tokenId;
		emit Transfer(address(0x0), _receiver, _tokenId);
		emit Mint(_receiver, _tokenId, _totalFees, _failFees, _totalGas, _avgGwei, _totalDonated, _totalTxs, _failTxs);
	}
	
	function approve(address _approved, uint256 _tokenId) external {
		require(msg.sender == ownerOf(_tokenId));
		info.list[_tokenId].approved = _approved;
		emit Approval(msg.sender, _approved, _tokenId);
	}

	function setApprovalForAll(address _operator, bool _approved) external {
		info.users[msg.sender].approved[_operator] = _approved;
		emit ApprovalForAll(msg.sender, _operator, _approved);
	}

	function transferFrom(address _from, address _to, uint256 _tokenId) external {
		_transfer(_from, _to, _tokenId);
	}

	function safeTransferFrom(address _from, address _to, uint256 _tokenId) external {
		safeTransferFrom(_from, _to, _tokenId, "");
	}

	function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes memory _data) public {
		_transfer(_from, _to, _tokenId);
		uint32 _size;
		assembly {
			_size := extcodesize(_to)
		}
		if (_size > 0) {
			require(Receiver(_to).onERC721Received(msg.sender, _from, _tokenId, _data) == 0x150b7a02);
		}
	}


	function name() external view returns (string memory) {
		return info.metadata.name();
	}

	function symbol() external view returns (string memory) {
		return info.metadata.symbol();
	}

	function tokenURI(uint256 _tokenId) external view returns (string memory) {
		return info.metadata.tokenURI(_tokenId);
	}

	function metadataAddress() public view returns (address) {
		return address(info.metadata);
	}

	function wtfAddress() public view returns (address) {
		return info.wtf;
	}

	function owner() public view returns (address) {
		return info.owner;
	}

	function totalSupply() public view returns (uint256) {
		return info.totalSupply;
	}

	function balanceOf(address _owner) public view returns (uint256) {
		return info.users[_owner].balance;
	}

	function ownerOf(uint256 _tokenId) public view returns (address) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].owner;
	}

	function getUser(uint256 _tokenId) public view returns (address) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].user;
	}

	function getApproved(uint256 _tokenId) public view returns (address) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].approved;
	}

	function getTotalFees(uint256 _tokenId) public view returns (uint256) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].totalFees;
	}

	function getFailFees(uint256 _tokenId) public view returns (uint256) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].failFees;
	}

	function getTotalGas(uint256 _tokenId) public view returns (uint256) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].totalGas;
	}

	function getAvgGwei(uint256 _tokenId) public view returns (uint256) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].avgGwei;
	}

	function getTotalDonated(uint256 _tokenId) public view returns (uint256) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].totalDonated;
	}

	function getTotalTxs(uint256 _tokenId) public view returns (uint256) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].totalTxs;
	}

	function getFailTxs(uint256 _tokenId) public view returns (uint256) {
		require(_tokenId < totalSupply());
		return info.list[_tokenId].failTxs;
	}

	function isApprovedForAll(address _owner, address _operator) public view returns (bool) {
		return info.users[_owner].approved[_operator];
	}

	function tokenIdOf(address _user) public view returns (uint256) {
		uint256 _index = info.users[_user].tokenIndex;
		require(_index > 0);
		return _index - 1;
	}

	function tokenByIndex(uint256 _index) public view returns (uint256) {
		require(_index < totalSupply());
		return _index;
	}

	function tokenOfOwnerByIndex(address _owner, uint256 _index) public view returns (uint256) {
		require(_index < balanceOf(_owner));
		return info.users[_owner].list[_index];
	}

	function getTokenCompressedInfo(uint256 _tokenId) public view returns (uint256[7] memory compressedInfo) {
		compressedInfo[0] = getTotalFees(_tokenId);
		compressedInfo[1] = getFailFees(_tokenId);
		compressedInfo[2] = getTotalGas(_tokenId);
		compressedInfo[3] = getAvgGwei(_tokenId);
		compressedInfo[4] = getTotalDonated(_tokenId);
		compressedInfo[5] = getTotalTxs(_tokenId);
		compressedInfo[6] = getFailTxs(_tokenId);
	}

	function getToken(uint256 _tokenId) public view returns (address tokenOwner, address approved, address user, uint256[7] memory compressedInfo) {
		return (ownerOf(_tokenId), getApproved(_tokenId), getUser(_tokenId), getTokenCompressedInfo(_tokenId));
	}

	function getTokens(uint256[] memory _tokenIds) public view returns (address[] memory owners, address[] memory approveds, address[] memory users, uint256[7][] memory compressedInfos) {
		uint256 _length = _tokenIds.length;
		owners = new address[](_length);
		approveds = new address[](_length);
		users = new address[](_length);
		compressedInfos = new uint256[7][](_length);
		for (uint256 i = 0; i < _length; i++) {
			(owners[i], approveds[i], users[i], compressedInfos[i]) = getToken(_tokenIds[i]);
		}
	}

	function getTokensTable(uint256 _limit, uint256 _page, bool _isAsc) public view returns (uint256[] memory tokenIds, address[] memory owners, address[] memory approveds, address[] memory users, uint256[7][] memory compressedInfos, uint256 totalTokens, uint256 totalPages) {
		require(_limit > 0);
		totalTokens = totalSupply();

		if (totalTokens > 0) {
			totalPages = (totalTokens / _limit) + (totalTokens % _limit == 0 ? 0 : 1);
			require(_page < totalPages);

			uint256 _offset = _limit * _page;
			if (_page == totalPages - 1 && totalTokens % _limit != 0) {
				_limit = totalTokens % _limit;
			}

			tokenIds = new uint256[](_limit);
			for (uint256 i = 0; i < _limit; i++) {
				tokenIds[i] = tokenByIndex(_isAsc ? _offset + i : totalTokens - _offset - i - 1);
			}
		} else {
			totalPages = 0;
			tokenIds = new uint256[](0);
		}
		(owners, approveds, users, compressedInfos) = getTokens(tokenIds);
	}

	function getOwnerTokensTable(address _owner, uint256 _limit, uint256 _page, bool _isAsc) public view returns (uint256[] memory tokenIds, address[] memory approveds, address[] memory users, uint256[7][] memory compressedInfos, uint256 totalTokens, uint256 totalPages) {
		require(_limit > 0);
		totalTokens = balanceOf(_owner);

		if (totalTokens > 0) {
			totalPages = (totalTokens / _limit) + (totalTokens % _limit == 0 ? 0 : 1);
			require(_page < totalPages);

			uint256 _offset = _limit * _page;
			if (_page == totalPages - 1 && totalTokens % _limit != 0) {
				_limit = totalTokens % _limit;
			}

			tokenIds = new uint256[](_limit);
			for (uint256 i = 0; i < _limit; i++) {
				tokenIds[i] = tokenOfOwnerByIndex(_owner, _isAsc ? _offset + i : totalTokens - _offset - i - 1);
			}
		} else {
			totalPages = 0;
			tokenIds = new uint256[](0);
		}
		( , approveds, users, compressedInfos) = getTokens(tokenIds);
	}

	function allInfoFor(address _owner) external view returns (uint256 supply, uint256 ownerBalance) {
		return (totalSupply(), balanceOf(_owner));
	}

	
	function _transfer(address _from, address _to, uint256 _tokenId) internal {
		address _owner = ownerOf(_tokenId);
		address _approved = getApproved(_tokenId);
		require(_from == _owner);
		require(msg.sender == _owner || msg.sender == _approved || isApprovedForAll(_owner, msg.sender));

		info.list[_tokenId].owner = _to;
		if (_approved != address(0x0)) {
			info.list[_tokenId].approved = address(0x0);
			emit Approval(address(0x0), address(0x0), _tokenId);
		}

		uint256 _index = info.users[_from].indexOf[_tokenId] - 1;
		uint256 _moved = info.users[_from].list[info.users[_from].balance - 1];
		info.users[_from].list[_index] = _moved;
		info.users[_from].indexOf[_moved] = _index + 1;
		info.users[_from].balance--;
		delete info.users[_from].indexOf[_tokenId];
		uint256 _newIndex = info.users[_to].balance++;
		info.users[_to].indexOf[_tokenId] = _newIndex + 1;
		info.users[_to].list[_newIndex] = _tokenId;
		emit Transfer(_from, _to, _tokenId);
	}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

608060405234801561001057600080fd5b506101f9806100206000396000f3fe6080604052600436106100225760003560e01c806386d1a69f1461002e57600080fd5b3661002957005b600080fd5b34801561003a57600080fd5b50610043610045565b005b30803161005157600080fd5b736129e7bcb71c0d7d4580141c4e6a995f16293f426108fc61007e600a6001600160a01b038516316101a1565b6040518115909202916000818181858888f193505050501580156100a6573d6000803e3d6000fd5b5073c9aebdd8fd0d52c35a32fd9155467cf28ce474c36108fc6100d460036001600160a01b038516316101a1565b6040518115909202916000818181858888f193505050501580156100fc573d6000803e3d6000fd5b5073dee79ed62b42e30ea7ebb6f1b7a3f04143d18b7f6108fc61012a60026001600160a01b038516316101a1565b6040518115909202916000818181858888f19350505050158015610152573d6000803e3d6000fd5b5060405173575446aa9e9647c40edb7a467e45c5916add1538906001600160a01b0383163180156108fc02916000818181858888f1935050505015801561019d573d6000803e3d6000fd5b5050565b6000826101be57634e487b7160e01b600052601260045260246000fd5b50049056fea2646970667358221220fe3f3505f2bdd4705e1008de1d644cef4162746ee8a345c0e6b11248eafa64d564736f6c634300080b0033

Deployed Bytecode

0x6080604052600436106100225760003560e01c806386d1a69f1461002e57600080fd5b3661002957005b600080fd5b34801561003a57600080fd5b50610043610045565b005b30803161005157600080fd5b736129e7bcb71c0d7d4580141c4e6a995f16293f426108fc61007e600a6001600160a01b038516316101a1565b6040518115909202916000818181858888f193505050501580156100a6573d6000803e3d6000fd5b5073c9aebdd8fd0d52c35a32fd9155467cf28ce474c36108fc6100d460036001600160a01b038516316101a1565b6040518115909202916000818181858888f193505050501580156100fc573d6000803e3d6000fd5b5073dee79ed62b42e30ea7ebb6f1b7a3f04143d18b7f6108fc61012a60026001600160a01b038516316101a1565b6040518115909202916000818181858888f19350505050158015610152573d6000803e3d6000fd5b5060405173575446aa9e9647c40edb7a467e45c5916add1538906001600160a01b0383163180156108fc02916000818181858888f1935050505015801561019d573d6000803e3d6000fd5b5050565b6000826101be57634e487b7160e01b600052601260045260246000fd5b50049056fea2646970667358221220fe3f3505f2bdd4705e1008de1d644cef4162746ee8a345c0e6b11248eafa64d564736f6c634300080b0033

Deployed Bytecode Sourcemap

750:510:5:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;806:452;;;;;;;;;;;;;:::i;:::-;;;862:4;879:13;;871:26;;;;;;909:42;901:80;962:18;978:2;-1:-1:-1;;;;;962:13:5;;;:18;:::i;:::-;901:80;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;1000:42:5;992:79;1053:17;1069:1;-1:-1:-1;;;;;1053:13:5;;;:17;:::i;:::-;992:79;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;1090:42:5;1082:79;1143:17;1159:1;-1:-1:-1;;;;;1143:13:5;;;:17;:::i;:::-;1082:79;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;1172:75:5;;1180:42;;-1:-1:-1;;;;;1233:13:5;;;1172:75;;;;;;;;;1233:13;1180:42;1172:75;;;;;;;;;;;;;;;;;;;;;834:424;806:452::o;14:217:8:-;54:1;80;70:132;;124:10;119:3;115:20;112:1;105:31;159:4;156:1;149:15;187:4;184:1;177:15;70:132;-1:-1:-1;216:9:8;;14:217::o

Swarm Source

ipfs://fe3f3505f2bdd4705e1008de1d644cef4162746ee8a345c0e6b11248eafa64d5

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.