ETH Price: $2,276.12 (-4.33%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AllowListGateKeeper

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.17;

import "./IGateKeeper.sol";
import "openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

/// @notice A gateKeeper that implements a simple allow list per gate.
contract AllowListGateKeeper is IGateKeeper {
    uint96 private _lastId;
    /// @notice Get the merkle root used by a gate identifyied by it's `id`.
    mapping(uint96 => bytes32) public merkleRoots;

    /// @inheritdoc IGateKeeper
    function isAllowed(
        address participant,
        bytes12 id,
        bytes memory userData
    ) external view returns (bool) {
        bytes32[] memory proof = abi.decode(userData, (bytes32[]));
        bytes32 leaf;
        assembly {
            mstore(0x00, participant)
            leaf := keccak256(0x0C, 20)
        }

        return MerkleProof.verify(proof, merkleRoots[uint96(id)], leaf);
    }

    /// @notice Create a new gate using `merkleRoot` to implement the allowlist.
    /// @param merkleRoot The merkle root to use for the allowlist.
    /// @return id The ID of the new gate.
    function createGate(bytes32 merkleRoot) external returns (bytes12 id) {
        uint96 id_ = ++_lastId;
        merkleRoots[id_] = merkleRoot;
        id = bytes12(id_);
    }
}

File 2 of 3 : IGateKeeper.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.17;

// Interface for a gatekeeper contract used for private crowdfund instances.
interface IGateKeeper {
    /// @notice Check if a participant is eligible to participate in a crowdfund.
    /// @param participant The address of the participant.
    /// @param id The ID of the gate to eligibility against.
    /// @param userData The data used to check eligibility.
    /// @return `true` if the participant is allowed to participate, `false` otherwise.
    function isAllowed(
        address participant,
        bytes12 id,
        bytes memory userData
    ) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The proofs can be generated using the JavaScript library
 * https://github.com/miguelmota/merkletreejs[merkletreejs].
 * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
 *
 * See `test/utils/cryptography/MerkleProof.test.js` for some examples.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be proved to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and the sibling nodes in `proof`,
     * consuming from one or the other at each step according to the instructions given by
     * `proofFlags`.
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

Settings
{
  "remappings": [
    "ds-test/=lib/solmate/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin/=lib/openzeppelin-contracts/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"createGate","outputs":[{"internalType":"bytes12","name":"id","type":"bytes12"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"participant","type":"address"},{"internalType":"bytes12","name":"id","type":"bytes12"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"isAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint96","name":"","type":"uint96"}],"name":"merkleRoots","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}]

608060405234801561001057600080fd5b506104a4806100206000396000f3fe608060405234801561001057600080fd5b50600436106100415760003560e01c80636a61e4fb1461004657806399e8281414610077578063b889a18f1461009a575b600080fd5b610059610054366004610201565b6100c8565b6040516001600160a01b031990911681526020015b60405180910390f35b61008a610085366004610261565b61011f565b604051901515815260200161006e565b6100ba6100a8366004610334565b60016020526000908152604090205481565b60405190815260200161006e565b600080548190819081906100e4906001600160601b0316610373565b82546001600160601b038083166101009490940a84810291021990911617909255600090815260016020526040902093909355505060a01b90565b600080828060200190518101906101369190610399565b60008681526014600c2060a087901c82526001602052604090912054919250906101629083908361016c565b9695505050505050565b6000826101798584610182565b14949350505050565b600081815b84518110156101c7576101b3828683815181106101a6576101a661043f565b60200260200101516101cf565b9150806101bf81610455565b915050610187565b509392505050565b60008183106101eb5760008281526020849052604090206101fa565b60008381526020839052604090205b9392505050565b60006020828403121561021357600080fd5b5035919050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff811182821017156102595761025961021a565b604052919050565b60008060006060848603121561027657600080fd5b83356001600160a01b038116811461028d57600080fd5b92506020848101356001600160a01b0319811681146102ab57600080fd5b9250604085013567ffffffffffffffff808211156102c857600080fd5b818701915087601f8301126102dc57600080fd5b8135818111156102ee576102ee61021a565b610300601f8201601f19168501610230565b9150808252888482850101111561031657600080fd5b80848401858401376000848284010152508093505050509250925092565b60006020828403121561034657600080fd5b81356001600160601b03811681146101fa57600080fd5b634e487b7160e01b600052601160045260246000fd5b60006001600160601b0380831681810361038f5761038f61035d565b6001019392505050565b600060208083850312156103ac57600080fd5b825167ffffffffffffffff808211156103c457600080fd5b818501915085601f8301126103d857600080fd5b8151818111156103ea576103ea61021a565b8060051b91506103fb848301610230565b818152918301840191848101908884111561041557600080fd5b938501935b838510156104335784518252938501939085019061041a565b98975050505050505050565b634e487b7160e01b600052603260045260246000fd5b6000600182016104675761046761035d565b506001019056fea26469706673582212205aa26e66bdd4a71aded1a4f6f61ad96097e70d197027a66306454c39a88e325964736f6c63430008110033

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100415760003560e01c80636a61e4fb1461004657806399e8281414610077578063b889a18f1461009a575b600080fd5b610059610054366004610201565b6100c8565b6040516001600160a01b031990911681526020015b60405180910390f35b61008a610085366004610261565b61011f565b604051901515815260200161006e565b6100ba6100a8366004610334565b60016020526000908152604090205481565b60405190815260200161006e565b600080548190819081906100e4906001600160601b0316610373565b82546001600160601b038083166101009490940a84810291021990911617909255600090815260016020526040902093909355505060a01b90565b600080828060200190518101906101369190610399565b60008681526014600c2060a087901c82526001602052604090912054919250906101629083908361016c565b9695505050505050565b6000826101798584610182565b14949350505050565b600081815b84518110156101c7576101b3828683815181106101a6576101a661043f565b60200260200101516101cf565b9150806101bf81610455565b915050610187565b509392505050565b60008183106101eb5760008281526020849052604090206101fa565b60008381526020839052604090205b9392505050565b60006020828403121561021357600080fd5b5035919050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff811182821017156102595761025961021a565b604052919050565b60008060006060848603121561027657600080fd5b83356001600160a01b038116811461028d57600080fd5b92506020848101356001600160a01b0319811681146102ab57600080fd5b9250604085013567ffffffffffffffff808211156102c857600080fd5b818701915087601f8301126102dc57600080fd5b8135818111156102ee576102ee61021a565b610300601f8201601f19168501610230565b9150808252888482850101111561031657600080fd5b80848401858401376000848284010152508093505050509250925092565b60006020828403121561034657600080fd5b81356001600160601b03811681146101fa57600080fd5b634e487b7160e01b600052601160045260246000fd5b60006001600160601b0380831681810361038f5761038f61035d565b6001019392505050565b600060208083850312156103ac57600080fd5b825167ffffffffffffffff808211156103c457600080fd5b818501915085601f8301126103d857600080fd5b8151818111156103ea576103ea61021a565b8060051b91506103fb848301610230565b818152918301840191848101908884111561041557600080fd5b938501935b838510156104335784518252938501939085019061041a565b98975050505050505050565b634e487b7160e01b600052603260045260246000fd5b6000600182016104675761046761035d565b506001019056fea26469706673582212205aa26e66bdd4a71aded1a4f6f61ad96097e70d197027a66306454c39a88e325964736f6c63430008110033

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.