ETH Price: $2,606.21 (-0.49%)

Contract

0x4c707764cbFB4FFa078e169e6b8A6AdbE7526a2c
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
0x61010060190374202024-01-19 0:47:23270 days ago1705625243IN
 Contract Creation
0 ETH0.0106636240.03717529

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x430BEdcA...8D0d9942a
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
FixedPriceStrategy

Compiler Version
v0.8.10+commit.fc410830

Optimization Enabled:
Yes with 200 runs

Other Settings:
london EvmVersion
File 1 of 3 : FixedPriceStrategy.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;

import {Math} from '@openzeppelin/contracts/utils/math/Math.sol';
import {IGsmPriceStrategy} from './interfaces/IGsmPriceStrategy.sol';

/**
 * @title FixedPriceStrategy
 * @author Aave
 * @notice Price strategy involving a fixed-rate conversion from an underlying asset to GHO
 */
contract FixedPriceStrategy is IGsmPriceStrategy {
  using Math for uint256;

  /// @inheritdoc IGsmPriceStrategy
  uint256 public constant GHO_DECIMALS = 18;

  /// @inheritdoc IGsmPriceStrategy
  address public immutable UNDERLYING_ASSET;

  /// @inheritdoc IGsmPriceStrategy
  uint256 public immutable UNDERLYING_ASSET_DECIMALS;

  /// @dev The price ratio from underlying asset to GHO (expressed in WAD), e.g. a ratio of 2e18 means 2 GHO per 1 underlying asset
  uint256 public immutable PRICE_RATIO;

  /// @dev Underlying asset units represent units for the underlying asset
  uint256 internal immutable _underlyingAssetUnits;

  /**
   * @dev Constructor
   * @param priceRatio The price ratio from underlying asset to GHO (expressed in WAD)
   * @param underlyingAsset The address of the underlying asset
   * @param underlyingAssetDecimals The number of decimals of the underlying asset
   */
  constructor(uint256 priceRatio, address underlyingAsset, uint8 underlyingAssetDecimals) {
    require(priceRatio > 0, 'INVALID_PRICE_RATIO');
    PRICE_RATIO = priceRatio;
    UNDERLYING_ASSET = underlyingAsset;
    UNDERLYING_ASSET_DECIMALS = underlyingAssetDecimals;
    _underlyingAssetUnits = 10 ** underlyingAssetDecimals;
  }

  /// @inheritdoc IGsmPriceStrategy
  function getAssetPriceInGho(uint256 assetAmount, bool roundUp) external view returns (uint256) {
    return
      assetAmount.mulDiv(
        PRICE_RATIO,
        _underlyingAssetUnits,
        roundUp ? Math.Rounding.Up : Math.Rounding.Down
      );
  }

  /// @inheritdoc IGsmPriceStrategy
  function getGhoPriceInAsset(uint256 ghoAmount, bool roundUp) external view returns (uint256) {
    return
      ghoAmount.mulDiv(
        _underlyingAssetUnits,
        PRICE_RATIO,
        roundUp ? Math.Rounding.Up : Math.Rounding.Down
      );
  }
}

File 2 of 3 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

File 3 of 3 : IGsmPriceStrategy.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @title IGsmPriceStrategy
 * @author Aave
 * @notice Defines the behaviour of Price Strategies
 */
interface IGsmPriceStrategy {
  /**
   * @notice Returns the number of decimals of GHO
   * @return The number of decimals of GHO
   */
  function GHO_DECIMALS() external view returns (uint256);

  /**
   * @notice Returns the address of the underlying asset being priced
   * @return The address of the underlying asset
   */
  function UNDERLYING_ASSET() external view returns (address);

  /**
   * @notice Returns the decimals of the underlying asset being priced
   * @return The number of decimals of the underlying asset
   */
  function UNDERLYING_ASSET_DECIMALS() external view returns (uint256);

  /**
   * @notice Returns the price of the underlying asset (GHO denominated)
   * @param assetAmount The amount of the underlying asset to calculate the price of
   * @param roundUp True if the price should be rounded up, false if rounded down
   * @return The price of the underlying asset (expressed in GHO units)
   */
  function getAssetPriceInGho(uint256 assetAmount, bool roundUp) external view returns (uint256);

  /**
   * @notice Returns the price of GHO (denominated in the underlying asset)
   * @param ghoAmount The amount of GHO to calculate the price of
   * @param roundUp True if the price should be rounded up, false if rounded down
   * @return The price of the GHO amount (expressed in underlying asset units)
   */
  function getGhoPriceInAsset(uint256 ghoAmount, bool roundUp) external view returns (uint256);
}

Settings
{
  "remappings": [
    "@aave/=node_modules/@aave/",
    "@aave/core-v3/=node_modules/@aave/core-v3/",
    "@aave/periphery-v3/=node_modules/@aave/periphery-v3/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "aave-stk-v1-5/=lib/aave-stk-v1-5/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat-deploy/=node_modules/hardhat-deploy/",
    "hardhat/=node_modules/hardhat/",
    "aave-address-book/=lib/aave-address-book/src/",
    "aave-helpers/=lib/aave-stk-v1-5/lib/aave-helpers/",
    "aave-v3-core/=lib/aave-address-book/lib/aave-v3-core/",
    "aave-v3-periphery/=lib/aave-address-book/lib/aave-v3-periphery/",
    "erc4626-tests/=lib/aave-stk-v1-5/lib/openzeppelin-contracts/lib/erc4626-tests/",
    "openzeppelin-contracts/=lib/aave-stk-v1-5/lib/openzeppelin-contracts/",
    "solidity-utils/=lib/solidity-utils/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"priceRatio","type":"uint256"},{"internalType":"address","name":"underlyingAsset","type":"address"},{"internalType":"uint8","name":"underlyingAssetDecimals","type":"uint8"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"GHO_DECIMALS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRICE_RATIO","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNDERLYING_ASSET","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNDERLYING_ASSET_DECIMALS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetAmount","type":"uint256"},{"internalType":"bool","name":"roundUp","type":"bool"}],"name":"getAssetPriceInGho","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"ghoAmount","type":"uint256"},{"internalType":"bool","name":"roundUp","type":"bool"}],"name":"getGhoPriceInAsset","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100625760003560e01c80632e0e1eb6146100675780633545cd86146100825780633c431d6a146100a95780635ded74a5146100d0578063a7b78c3c146100e3578063e6025393146100f6575b600080fd5b61006f601281565b6040519081526020015b60405180910390f35b61006f7f000000000000000000000000000000000000000000000000000000000000000681565b61006f7f0000000000000000000000000000000000000000000000000de0b6b3a764000081565b61006f6100de3660046102fa565b610135565b61006f6100f13660046102fa565b61019b565b61011d7f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec781565b6040516001600160a01b039091168152602001610079565b60006101947f00000000000000000000000000000000000000000000000000000000000f42407f0000000000000000000000000000000000000000000000000de0b6b3a76400008461018857600061018b565b60015b869291906101ee565b9392505050565b60006101947f0000000000000000000000000000000000000000000000000de0b6b3a76400007f00000000000000000000000000000000000000000000000000000000000f42408461018857600061018b565b6000806101fc86868661024b565b905060018360028111156102125761021261032f565b14801561022f57506000848061022a5761022a610345565b868809115b156102425761023f60018261035b565b90505b95945050505050565b6000808060001985870985870292508281108382030391505080600014156102865783828161027c5761027c610345565b0492505050610194565b80841161029257600080fd5b600084868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000806040838503121561030d57600080fd5b823591506020830135801515811461032457600080fd5b809150509250929050565b634e487b7160e01b600052602160045260246000fd5b634e487b7160e01b600052601260045260246000fd5b6000821982111561037c57634e487b7160e01b600052601160045260246000fd5b50019056fea2646970667358221220be8834c82818d60e4c2763dd74fcede1bb330cb409ba3bed33d28da6946c7d4764736f6c634300080a0033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.