ETH Price: $2,255.37 (-0.26%)
Gas: 45 Gwei

Contract

0x13c7bCc2126d6892eEFd489Ad215A1a09F36AA9f
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multi Chain

Transaction Hash
Method
Block
From
To
Value
Withdraw186877192023-11-30 23:33:356 days 13 hrs ago1701387215IN
0x13c7bC...9F36AA9f
0 ETH0.0461326847.20571529
Withdraw186282692023-11-22 15:48:2314 days 21 hrs ago1700668103IN
0x13c7bC...9F36AA9f
0 ETH0.0457115746.77481214
Set Rebalance185805212023-11-15 23:18:5921 days 13 hrs ago1700090339IN
0x13c7bC...9F36AA9f
0 ETH0.0023009631.4563347
Withdraw182068792023-09-24 16:35:1173 days 20 hrs ago1695573311IN
0x13c7bC...9F36AA9f
0 ETH0.008236798.14347792
Set Rebalance181902522023-09-22 8:39:1176 days 4 hrs ago1695371951IN
0x13c7bC...9F36AA9f
0 ETH0.00062378.52661203
Withdraw181823152023-09-21 5:57:3577 days 7 hrs ago1695275855IN
0x13c7bC...9F36AA9f
0 ETH0.007974248.15980868
Withdraw181720622023-09-19 19:32:3578 days 17 hrs ago1695151955IN
0x13c7bC...9F36AA9f
0 ETH0.013146612.9976685
Withdraw181504892023-09-16 18:31:3581 days 18 hrs ago1694889095IN
0x13c7bC...9F36AA9f
0 ETH0.0147971314.97257088
Withdraw181491902023-09-16 14:07:2381 days 22 hrs ago1694873243IN
0x13c7bC...9F36AA9f
0 ETH0.009709919.59991086
Withdraw179087592023-08-13 21:55:35115 days 15 hrs ago1691963735IN
0x13c7bC...9F36AA9f
0 ETH0.012013912.29362295
Withdraw178844852023-08-10 12:28:23119 days 34 mins ago1691670503IN
0x13c7bC...9F36AA9f
0 ETH0.0195436218.38952066
Set Rebalance178631122023-08-07 12:39:35122 days 22 mins ago1691411975IN
0x13c7bC...9F36AA9f
0 ETH0.0017674924.16323743
Set Rebalance178475342023-08-05 8:19:35124 days 4 hrs ago1691223575IN
0x13c7bC...9F36AA9f
0 ETH0.0009904713.54074699
Set Rebalance178416762023-08-04 12:39:35125 days 22 mins ago1691152775IN
0x13c7bC...9F36AA9f
0 ETH0.0016945323.165857
Withdraw177689852023-07-25 8:40:47135 days 4 hrs ago1690274447IN
0x13c7bC...9F36AA9f
0 ETH0.0240694923.95508385
Set Rebalance176975692023-07-15 8:19:23145 days 4 hrs ago1689409163IN
0x13c7bC...9F36AA9f
0 ETH0.0010215413.96543434
Withdraw176791572023-07-12 18:09:11147 days 18 hrs ago1689185351IN
0x13c7bC...9F36AA9f
0 ETH0.0496002950.13782701
Withdraw176790702023-07-12 17:51:23147 days 19 hrs ago1689184283IN
0x13c7bC...9F36AA9f
0 ETH0.074760176.15612137
Withdraw176237962023-07-04 23:23:47155 days 13 hrs ago1688513027IN
0x13c7bC...9F36AA9f
0 ETH0.0419641542.74785183
Withdraw176191722023-07-04 7:47:59156 days 5 hrs ago1688456879IN
0x13c7bC...9F36AA9f
0 ETH0.0162137416.22843339
Withdraw175919972023-06-30 12:09:11160 days 53 mins ago1688126951IN
0x13c7bC...9F36AA9f
0 ETH0.0423765642.91345417
Withdraw175908692023-06-30 8:20:35160 days 4 hrs ago1688113235IN
0x13c7bC...9F36AA9f
0 ETH0.0197733720.14286042
Withdraw175744842023-06-28 1:15:35162 days 11 hrs ago1687914935IN
0x13c7bC...9F36AA9f
0 ETH0.011661111.87887654
Withdraw175602512023-06-26 1:10:11164 days 11 hrs ago1687741811IN
0x13c7bC...9F36AA9f
0 ETH0.0132007213.36718902
Withdraw175600322023-06-26 0:25:23164 days 12 hrs ago1687739123IN
0x13c7bC...9F36AA9f
0 ETH0.0123095112.60886049
View all transactions

Latest 1 internal transaction

Advanced mode:
Parent Txn Hash Block From To Value
165697562023-02-06 12:30:23304 days 32 mins ago1675686623  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0xcfff8da37a14edddb503c3df3e988ff224c6cfd6

Contract Name:
ERC20RootVault

Compiler Version
v0.8.9+commit.e5eed63a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
Decompile Bytecode

Contract Source Code (Solidity Standard Json-Input format)

File 39 of 41 : ERC20RootVault.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.9;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "../libraries/external/FullMath.sol";
import "../libraries/ExceptionsLibrary.sol";
import "../interfaces/vaults/IERC20RootVaultGovernance.sol";
import "../interfaces/vaults/IERC20RootVault.sol";
import "../interfaces/utils/ILpCallback.sol";
import "../utils/ERC20Token.sol";
import "./AggregateVault.sol";
import "../interfaces/utils/IERC20RootVaultHelper.sol";

/// @notice Contract that mints and burns LP tokens in exchange for ERC20 liquidity.
contract ERC20RootVault is IERC20RootVault, ERC20Token, ReentrancyGuard, AggregateVault {
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.AddressSet;

    /// @inheritdoc IERC20RootVault
    uint64 public lastFeeCharge;
    /// @inheritdoc IERC20RootVault
    uint64 public totalWithdrawnAmountsTimestamp;
    /// @inheritdoc IERC20RootVault
    uint256[] public totalWithdrawnAmounts;
    /// @inheritdoc IERC20RootVault
    uint256 public lpPriceHighWaterMarkD18;
    EnumerableSet.AddressSet private _depositorsAllowlist;
    IERC20RootVaultHelper public helper;

    uint256 public lastRebalanceFlagSet;

    // -------------------  EXTERNAL, VIEW  -------------------
    /// @inheritdoc IERC20RootVault
    function depositorsAllowlist() external view returns (address[] memory) {
        return _depositorsAllowlist.values();
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(IERC165, AggregateVault)
        returns (bool)
    {
        return super.supportsInterface(interfaceId) || type(IERC20RootVault).interfaceId == interfaceId;
    }

    // -------------------  EXTERNAL, MUTATING  -------------------
    /// @inheritdoc IERC20RootVault
    function addDepositorsToAllowlist(address[] calldata depositors) external {
        _requireAtLeastStrategy();
        for (uint256 i = 0; i < depositors.length; i++) {
            _depositorsAllowlist.add(depositors[i]);
        }
    }

    /// @inheritdoc IERC20RootVault
    function removeDepositorsFromAllowlist(address[] calldata depositors) external {
        _requireAtLeastStrategy();
        for (uint256 i = 0; i < depositors.length; i++) {
            _depositorsAllowlist.remove(depositors[i]);
        }
    }

    function setRebalance() external {
        _requireAtLeastStrategy();
        IERC20RootVaultGovernance.StrategyParams memory strategyParams = IERC20RootVaultGovernance(
            address(_vaultGovernance)
        ).strategyParams(_nft);
        require(block.timestamp > lastRebalanceFlagSet + strategyParams.minTimeBetweenRebalances);
        lastRebalanceFlagSet = block.timestamp;
    }

    /// @inheritdoc IERC20RootVault
    function initialize(
        uint256 nft_,
        address[] memory vaultTokens_,
        address strategy_,
        uint256[] memory subvaultNfts_,
        IERC20RootVaultHelper helper_
    ) external {
        _initialize(vaultTokens_, nft_, strategy_, subvaultNfts_);
        _initERC20(_getTokenName(bytes("Mellow Lp Token "), nft_), _getTokenName(bytes("MLP"), nft_));
        uint256 len = vaultTokens_.length;
        totalWithdrawnAmounts = new uint256[](len);
        lastFeeCharge = uint64(block.timestamp);
        helper = helper_;
    }

    /// @inheritdoc IERC20RootVault
    function deposit(
        uint256[] memory tokenAmounts,
        uint256 minLpTokens,
        bytes memory vaultOptions
    ) external nonReentrant returns (uint256[] memory actualTokenAmounts) {
        require(
            !IERC20RootVaultGovernance(address(_vaultGovernance)).operatorParams().disableDeposit,
            ExceptionsLibrary.FORBIDDEN
        );

        IERC20RootVaultGovernance.StrategyParams memory strategyParams = IERC20RootVaultGovernance(
            address(_vaultGovernance)
        ).strategyParams(_nft);
        require(block.timestamp > lastRebalanceFlagSet + strategyParams.maxTimeOneRebalance);

        address[] memory tokens = _vaultTokens;
        uint256 supply = totalSupply;
        if (supply == 0) {
            for (uint256 i = 0; i < tokens.length; ++i) {
                require(tokenAmounts[i] >= 10 * _pullExistentials[i], ExceptionsLibrary.LIMIT_UNDERFLOW);
                require(
                    tokenAmounts[i] <= _pullExistentials[i] * _pullExistentials[i],
                    ExceptionsLibrary.LIMIT_OVERFLOW
                );
            }
        }
        uint256[] memory maxTvl;
        uint256 thisNft = _nft;
        {
            uint256[] memory minTvl;
            (minTvl, maxTvl) = tvl();
            _chargeFees(thisNft, minTvl, supply, tokens);
        }
        supply = totalSupply;
        IERC20RootVaultGovernance.DelayedStrategyParams memory delayedStrategyParams = IERC20RootVaultGovernance(
            address(_vaultGovernance)
        ).delayedStrategyParams(thisNft);
        require(
            !delayedStrategyParams.privateVault || _depositorsAllowlist.contains(msg.sender),
            ExceptionsLibrary.FORBIDDEN
        );
        uint256[] memory normalizedAmounts = new uint256[](tokenAmounts.length);
        {
            uint256 preLpAmount;
            bool isSignificantTvl;
            (preLpAmount, isSignificantTvl) = _getLpAmount(maxTvl, tokenAmounts, supply);
            for (uint256 i = 0; i < tokens.length; ++i) {
                normalizedAmounts[i] = _getNormalizedAmount(
                    maxTvl[i],
                    tokenAmounts[i],
                    preLpAmount,
                    supply,
                    isSignificantTvl,
                    _pullExistentials[i]
                );
                IERC20(tokens[i]).safeTransferFrom(msg.sender, address(this), normalizedAmounts[i]);
            }
        }
        actualTokenAmounts = _push(normalizedAmounts, vaultOptions);
        (uint256 lpAmount, ) = _getLpAmount(maxTvl, actualTokenAmounts, supply);
        require(lpAmount >= minLpTokens, ExceptionsLibrary.LIMIT_UNDERFLOW);
        require(lpAmount != 0, ExceptionsLibrary.VALUE_ZERO);
        IERC20RootVaultGovernance.StrategyParams memory params = IERC20RootVaultGovernance(address(_vaultGovernance))
            .strategyParams(thisNft);
        require(lpAmount + balanceOf[msg.sender] <= params.tokenLimitPerAddress, ExceptionsLibrary.LIMIT_OVERFLOW);
        require(lpAmount + supply <= params.tokenLimit, ExceptionsLibrary.LIMIT_OVERFLOW);
        // lock tokens on first deposit
        if (supply == 0) {
            _mint(address(0), lpAmount);
        } else {
            _mint(msg.sender, lpAmount);
        }

        for (uint256 i = 0; i < _vaultTokens.length; ++i) {
            if (normalizedAmounts[i] > actualTokenAmounts[i]) {
                IERC20(_vaultTokens[i]).safeTransfer(msg.sender, normalizedAmounts[i] - actualTokenAmounts[i]);
            }
        }

        bytes memory depositInfo = abi.encode(actualTokenAmounts[0], actualTokenAmounts[1]);

        if (delayedStrategyParams.depositCallbackAddress != address(0)) {
            ILpCallback(delayedStrategyParams.depositCallbackAddress).depositCallback(
                bytes.concat(vaultOptions, depositInfo)
            );
        }

        emit Deposit(msg.sender, _vaultTokens, actualTokenAmounts, lpAmount);
    }

    /// @inheritdoc IERC20RootVault
    function withdraw(
        address to,
        uint256 lpTokenAmount,
        uint256[] memory minTokenAmounts,
        bytes[] memory vaultsOptions
    ) external nonReentrant returns (uint256[] memory actualTokenAmounts) {
        IERC20RootVaultGovernance.StrategyParams memory strategyParams = IERC20RootVaultGovernance(
            address(_vaultGovernance)
        ).strategyParams(_nft);
        require(block.timestamp > lastRebalanceFlagSet + strategyParams.maxTimeOneRebalance);

        uint256 supply = totalSupply;
        address[] memory tokens = _vaultTokens;
        uint256[] memory tokenAmounts = new uint256[](_vaultTokens.length);
        (uint256[] memory minTvl, ) = tvl();
        _chargeFees(_nft, minTvl, supply, tokens);
        supply = totalSupply;
        uint256 balance = balanceOf[msg.sender];
        if (lpTokenAmount > balance) {
            lpTokenAmount = balance;
        }
        for (uint256 i = 0; i < tokens.length; ++i) {
            tokenAmounts[i] = FullMath.mulDiv(lpTokenAmount, minTvl[i], supply);
        }

        IERC20RootVaultGovernance.DelayedStrategyParams memory delayedStrategyParams = IERC20RootVaultGovernance(
            address(_vaultGovernance)
        ).delayedStrategyParams(_nft);

        if (delayedStrategyParams.withdrawCallbackAddress != address(0)) {
            bytes memory withdrawInfo = abi.encode(tokenAmounts[0], tokenAmounts[1]);
            try
                ILpCallback(delayedStrategyParams.withdrawCallbackAddress).withdrawCallback(
                    bytes.concat(vaultsOptions[0], withdrawInfo)
                )
            {} catch Error(string memory reason) {
                emit WithdrawCallbackLog(reason);
            } catch {
                emit WithdrawCallbackLog("callback failed without reason");
            }
        }

        actualTokenAmounts = _pull(address(this), tokenAmounts, vaultsOptions);
        // we are draining balance
        // if no sufficent amounts rest
        bool sufficientAmountRest = false;
        for (uint256 i = 0; i < tokens.length; ++i) {
            require(actualTokenAmounts[i] >= minTokenAmounts[i], ExceptionsLibrary.LIMIT_UNDERFLOW);
            if (FullMath.mulDiv(balance, minTvl[i], supply) >= _pullExistentials[i] + actualTokenAmounts[i]) {
                sufficientAmountRest = true;
            }
            if (actualTokenAmounts[i] != 0) {
                IERC20(tokens[i]).safeTransfer(to, actualTokenAmounts[i]);
            }
        }

        {
            IProtocolGovernance protocolGovernance = _vaultGovernance.internalParams().protocolGovernance;
            if (uint64(block.timestamp) != totalWithdrawnAmountsTimestamp) {
                totalWithdrawnAmountsTimestamp = uint64(block.timestamp);
                totalWithdrawnAmounts = new uint256[](actualTokenAmounts.length);
            }
            for (uint256 i = 0; i < actualTokenAmounts.length; i++) {
                totalWithdrawnAmounts[i] += actualTokenAmounts[i];
                require(
                    totalWithdrawnAmounts[i] <= protocolGovernance.withdrawLimit(_vaultTokens[i]),
                    ExceptionsLibrary.LIMIT_OVERFLOW
                );
            }
        }

        if (sufficientAmountRest) {
            _burn(msg.sender, lpTokenAmount);
        } else {
            _burn(msg.sender, balance);
        }

        emit Withdraw(msg.sender, _vaultTokens, actualTokenAmounts, lpTokenAmount);
    }

    // -------------------  INTERNAL, VIEW  -------------------

    function _getLpAmount(
        uint256[] memory tvl_,
        uint256[] memory amounts,
        uint256 supply
    ) internal view returns (uint256 lpAmount, bool isSignificantTvl) {
        if (supply == 0) {
            // On init lpToken = max(tokenAmounts)
            for (uint256 i = 0; i < tvl_.length; ++i) {
                if (amounts[i] > lpAmount) {
                    lpAmount = amounts[i];
                }
            }
            return (lpAmount, false);
        }
        uint256 tvlsLength = tvl_.length;
        bool isLpAmountUpdated = false;
        uint256[] memory pullExistentials = _pullExistentials;
        for (uint256 i = 0; i < tvlsLength; ++i) {
            if (tvl_[i] < pullExistentials[i]) {
                continue;
            }

            uint256 tokenLpAmount = FullMath.mulDiv(amounts[i], supply, tvl_[i]);
            // take min of meaningful tokenLp amounts
            if ((tokenLpAmount < lpAmount) || (isLpAmountUpdated == false)) {
                isLpAmountUpdated = true;
                lpAmount = tokenLpAmount;
            }
        }
        isSignificantTvl = isLpAmountUpdated;
        // in case of almost zero tvl for all tokens -> do the same with supply == 0
        if (!isSignificantTvl) {
            for (uint256 i = 0; i < tvl_.length; ++i) {
                if (amounts[i] > lpAmount) {
                    lpAmount = amounts[i];
                }
            }
        }
    }

    function _getNormalizedAmount(
        uint256 tvl_,
        uint256 amount,
        uint256 lpAmount,
        uint256 supply,
        bool isSignificantTvl,
        uint256 existentialsAmount
    ) internal pure returns (uint256) {
        if (supply == 0 || !isSignificantTvl) {
            // skip normalization on init
            return amount;
        }

        if (tvl_ < existentialsAmount) {
            // use zero-normalization when all tvls are dust-like
            return 0;
        }

        // normalize amount
        uint256 res = FullMath.mulDiv(tvl_, lpAmount, supply);
        if (res > amount) {
            res = amount;
        }

        return res;
    }

    function _requireAtLeastStrategy() internal view {
        uint256 nft_ = _nft;
        IVaultGovernance.InternalParams memory internalParams = _vaultGovernance.internalParams();
        require(
            (internalParams.protocolGovernance.isAdmin(msg.sender) ||
                internalParams.registry.getApproved(nft_) == msg.sender ||
                (internalParams.registry.ownerOf(nft_) == msg.sender)),
            ExceptionsLibrary.FORBIDDEN
        );
    }

    function _getTokenName(bytes memory prefix, uint256 nft_) internal pure returns (string memory) {
        bytes memory number = bytes(Strings.toString(nft_));
        return string(abi.encodePacked(prefix, number));
    }

    // -------------------  INTERNAL, MUTATING  -------------------

    /// @dev we are charging fees on the deposit / withdrawal
    /// fees are charged before the tokens transfer and change the balance of the lp tokens
    function _chargeFees(
        uint256 thisNft,
        uint256[] memory tvls,
        uint256 supply,
        address[] memory tokens
    ) internal {
        IERC20RootVaultGovernance vg = IERC20RootVaultGovernance(address(_vaultGovernance));
        uint256 elapsed = block.timestamp - uint256(lastFeeCharge);
        IERC20RootVaultGovernance.DelayedProtocolParams memory delayedProtocolParams = vg.delayedProtocolParams();
        if (elapsed < delayedProtocolParams.managementFeeChargeDelay) {
            return;
        }
        lastFeeCharge = uint64(block.timestamp);
        // don't charge on initial deposit
        if (supply == 0) {
            return;
        }
        {
            bool needSkip = true;
            uint256[] memory pullExistentials = _pullExistentials;
            for (uint256 i = 0; i < pullExistentials.length; ++i) {
                if (tvls[i] >= pullExistentials[i]) {
                    needSkip = false;
                    break;
                }
            }
            if (needSkip) {
                return;
            }
        }
        IERC20RootVaultGovernance.DelayedStrategyParams memory strategyParams = vg.delayedStrategyParams(thisNft);
        uint256 protocolFee = vg.delayedProtocolPerVaultParams(thisNft).protocolFee;
        address protocolTreasury = vg.internalParams().protocolGovernance.protocolTreasury();
        _chargeManagementFees(
            strategyParams.managementFee,
            protocolFee,
            strategyParams.strategyTreasury,
            protocolTreasury,
            elapsed,
            supply
        );

        _chargePerformanceFees(
            supply,
            tvls,
            strategyParams.performanceFee,
            strategyParams.strategyPerformanceTreasury,
            tokens,
            delayedProtocolParams.oracle
        );
    }

    function _chargeManagementFees(
        uint256 managementFee,
        uint256 protocolFee,
        address strategyTreasury,
        address protocolTreasury,
        uint256 elapsed,
        uint256 lpSupply
    ) internal {
        if (managementFee > 0) {
            uint256 toMint = FullMath.mulDiv(
                managementFee * elapsed,
                lpSupply,
                CommonLibrary.YEAR * CommonLibrary.DENOMINATOR
            );
            _mint(strategyTreasury, toMint);
            emit ManagementFeesCharged(strategyTreasury, managementFee, toMint);
        }
        if (protocolFee > 0) {
            uint256 toMint = FullMath.mulDiv(
                protocolFee * elapsed,
                lpSupply,
                CommonLibrary.YEAR * CommonLibrary.DENOMINATOR
            );
            _mint(protocolTreasury, toMint);
            emit ProtocolFeesCharged(protocolTreasury, protocolFee, toMint);
        }
    }

    function _chargePerformanceFees(
        uint256 baseSupply,
        uint256[] memory baseTvls,
        uint256 performanceFee,
        address treasury,
        address[] memory tokens,
        IOracle oracle
    ) internal {
        if ((performanceFee == 0) || (baseSupply == 0)) {
            return;
        }
        uint256 tvlToken0 = helper.getTvlToken0(baseTvls, tokens, oracle);
        uint256 lpPriceD18 = FullMath.mulDiv(tvlToken0, CommonLibrary.D18, baseSupply);
        uint256 hwmsD18 = lpPriceHighWaterMarkD18;
        if (lpPriceD18 <= hwmsD18) {
            return;
        }
        uint256 toMint;
        if (hwmsD18 > 0) {
            toMint = FullMath.mulDiv(baseSupply, lpPriceD18 - hwmsD18, hwmsD18);
            toMint = FullMath.mulDiv(toMint, performanceFee, CommonLibrary.DENOMINATOR);
            _mint(treasury, toMint);
        }
        lpPriceHighWaterMarkD18 = lpPriceD18;
        emit PerformanceFeesCharged(treasury, performanceFee, toMint);
    }

    // --------------------------  EVENTS  --------------------------

    /// @notice Emitted when management fees are charged
    /// @param treasury Treasury receiver of the fee
    /// @param feeRate Fee percent applied denominated in 10 ** 9
    /// @param amount Amount of lp token minted
    event ManagementFeesCharged(address indexed treasury, uint256 feeRate, uint256 amount);

    /// @notice Emitted when protocol fees are charged
    /// @param treasury Treasury receiver of the fee
    /// @param feeRate Fee percent applied denominated in 10 ** 9
    /// @param amount Amount of lp token minted
    event ProtocolFeesCharged(address indexed treasury, uint256 feeRate, uint256 amount);

    /// @notice Emitted when performance fees are charged
    /// @param treasury Treasury receiver of the fee
    /// @param feeRate Fee percent applied denominated in 10 ** 9
    /// @param amount Amount of lp token minted
    event PerformanceFeesCharged(address indexed treasury, uint256 feeRate, uint256 amount);

    /// @notice Emitted when liquidity is deposited
    /// @param from The source address for the liquidity
    /// @param tokens ERC20 tokens deposited
    /// @param actualTokenAmounts Token amounts deposited
    /// @param lpTokenMinted LP tokens received by the liquidity provider
    event Deposit(address indexed from, address[] tokens, uint256[] actualTokenAmounts, uint256 lpTokenMinted);

    /// @notice Emitted when liquidity is withdrawn
    /// @param from The source address for the liquidity
    /// @param tokens ERC20 tokens withdrawn
    /// @param actualTokenAmounts Token amounts withdrawn
    /// @param lpTokenBurned LP tokens burned from the liquidity provider
    event Withdraw(address indexed from, address[] tokens, uint256[] actualTokenAmounts, uint256 lpTokenBurned);

    /// @notice Emitted when callback in deposit failed
    /// @param reason Error reason
    event DepositCallbackLog(string reason);

    /// @notice Emitted when callback in withdraw failed
    /// @param reason Error reason
    event WithdrawCallbackLog(string reason);
}

File 2 of 41 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

File 3 of 41 : IAccessControlEnumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";

/**
 * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
 */
interface IAccessControlEnumerable is IAccessControl {
    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) external view returns (address);

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) external view returns (uint256);
}

File 4 of 41 : Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (proxy/Clones.sol)

pragma solidity ^0.8.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(0, 0x09, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(0, 0x09, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := keccak256(add(ptr, 0x43), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

File 5 of 41 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 6 of 41 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 7 of 41 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 8 of 41 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 9 of 41 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 10 of 41 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 11 of 41 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 12 of 41 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 13 of 41 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 14 of 41 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 15 of 41 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 16 of 41 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 17 of 41 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

File 18 of 41 : IProtocolGovernance.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "./utils/IDefaultAccessControl.sol";
import "./IUnitPricesGovernance.sol";

interface IProtocolGovernance is IDefaultAccessControl, IUnitPricesGovernance {
    /// @notice CommonLibrary protocol params.
    /// @param maxTokensPerVault Max different token addresses that could be managed by the vault
    /// @param governanceDelay The delay (in secs) that must pass before setting new pending params to commiting them
    /// @param protocolTreasury The address that collects protocolFees, if protocolFee is not zero
    /// @param forceAllowMask If a permission bit is set in this mask it forces all addresses to have this permission as true
    /// @param withdrawLimit Withdraw limit (in unit prices, i.e. usd)
    struct Params {
        uint256 maxTokensPerVault;
        uint256 governanceDelay;
        address protocolTreasury;
        uint256 forceAllowMask;
        uint256 withdrawLimit;
    }

    // -------------------  EXTERNAL, VIEW  -------------------

    /// @notice Timestamp after which staged granted permissions for the given address can be committed.
    /// @param target The given address
    /// @return Zero if there are no staged permission grants, timestamp otherwise
    function stagedPermissionGrantsTimestamps(address target) external view returns (uint256);

    /// @notice Staged granted permission bitmask for the given address.
    /// @param target The given address
    /// @return Bitmask
    function stagedPermissionGrantsMasks(address target) external view returns (uint256);

    /// @notice Permission bitmask for the given address.
    /// @param target The given address
    /// @return Bitmask
    function permissionMasks(address target) external view returns (uint256);

    /// @notice Timestamp after which staged pending protocol parameters can be committed
    /// @return Zero if there are no staged parameters, timestamp otherwise.
    function stagedParamsTimestamp() external view returns (uint256);

    /// @notice Staged pending protocol parameters.
    function stagedParams() external view returns (Params memory);

    /// @notice Current protocol parameters.
    function params() external view returns (Params memory);

    /// @notice Addresses for which non-zero permissions are set.
    function permissionAddresses() external view returns (address[] memory);

    /// @notice Permission addresses staged for commit.
    function stagedPermissionGrantsAddresses() external view returns (address[] memory);

    /// @notice Return all addresses where rawPermissionMask bit for permissionId is set to 1.
    /// @param permissionId Id of the permission to check.
    /// @return A list of dirty addresses.
    function addressesByPermission(uint8 permissionId) external view returns (address[] memory);

    /// @notice Checks if address has permission or given permission is force allowed for any address.
    /// @param addr Address to check
    /// @param permissionId Permission to check
    function hasPermission(address addr, uint8 permissionId) external view returns (bool);

    /// @notice Checks if address has all permissions.
    /// @param target Address to check
    /// @param permissionIds A list of permissions to check
    function hasAllPermissions(address target, uint8[] calldata permissionIds) external view returns (bool);

    /// @notice Max different ERC20 token addresses that could be managed by the protocol.
    function maxTokensPerVault() external view returns (uint256);

    /// @notice The delay for committing any governance params.
    function governanceDelay() external view returns (uint256);

    /// @notice The address of the protocol treasury.
    function protocolTreasury() external view returns (address);

    /// @notice Permissions mask which defines if ordinary permission should be reverted.
    /// This bitmask is xored with ordinary mask.
    function forceAllowMask() external view returns (uint256);

    /// @notice Withdraw limit per token per block.
    /// @param token Address of the token
    /// @return Withdraw limit per token per block
    function withdrawLimit(address token) external view returns (uint256);

    /// @notice Addresses that has staged validators.
    function stagedValidatorsAddresses() external view returns (address[] memory);

    /// @notice Timestamp after which staged granted permissions for the given address can be committed.
    /// @param target The given address
    /// @return Zero if there are no staged permission grants, timestamp otherwise
    function stagedValidatorsTimestamps(address target) external view returns (uint256);

    /// @notice Staged validator for the given address.
    /// @param target The given address
    /// @return Validator
    function stagedValidators(address target) external view returns (address);

    /// @notice Addresses that has validators.
    function validatorsAddresses() external view returns (address[] memory);

    /// @notice Address that has validators.
    /// @param i The number of address
    /// @return Validator address
    function validatorsAddress(uint256 i) external view returns (address);

    /// @notice Validator for the given address.
    /// @param target The given address
    /// @return Validator
    function validators(address target) external view returns (address);

    // -------------------  EXTERNAL, MUTATING, GOVERNANCE, IMMEDIATE  -------------------

    /// @notice Rollback all staged validators.
    function rollbackStagedValidators() external;

    /// @notice Revoke validator instantly from the given address.
    /// @param target The given address
    function revokeValidator(address target) external;

    /// @notice Stages a new validator for the given address
    /// @param target The given address
    /// @param validator The validator for the given address
    function stageValidator(address target, address validator) external;

    /// @notice Commits validator for the given address.
    /// @dev Reverts if governance delay has not passed yet.
    /// @param target The given address.
    function commitValidator(address target) external;

    /// @notice Commites all staged validators for which governance delay passed
    /// @return Addresses for which validators were committed
    function commitAllValidatorsSurpassedDelay() external returns (address[] memory);

    /// @notice Rollback all staged granted permission grant.
    function rollbackStagedPermissionGrants() external;

    /// @notice Commits permission grants for the given address.
    /// @dev Reverts if governance delay has not passed yet.
    /// @param target The given address.
    function commitPermissionGrants(address target) external;

    /// @notice Commites all staged permission grants for which governance delay passed.
    /// @return An array of addresses for which permission grants were committed.
    function commitAllPermissionGrantsSurpassedDelay() external returns (address[] memory);

    /// @notice Revoke permission instantly from the given address.
    /// @param target The given address.
    /// @param permissionIds A list of permission ids to revoke.
    function revokePermissions(address target, uint8[] memory permissionIds) external;

    /// @notice Commits staged protocol params.
    /// Reverts if governance delay has not passed yet.
    function commitParams() external;

    // -------------------  EXTERNAL, MUTATING, GOVERNANCE, DELAY  -------------------

    /// @notice Sets new pending params that could have been committed after governance delay expires.
    /// @param newParams New protocol parameters to set.
    function stageParams(Params memory newParams) external;

    /// @notice Stage granted permissions that could have been committed after governance delay expires.
    /// Resets commit delay and permissions if there are already staged permissions for this address.
    /// @param target Target address
    /// @param permissionIds A list of permission ids to grant
    function stagePermissionGrants(address target, uint8[] memory permissionIds) external;
}

File 19 of 41 : IUnitPricesGovernance.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "./utils/IDefaultAccessControl.sol";

interface IUnitPricesGovernance is IDefaultAccessControl, IERC165 {
    // -------------------  EXTERNAL, VIEW  -------------------

    /// @notice Estimated amount of token worth 1 USD staged for commit.
    /// @param token Address of the token
    /// @return The amount of token
    function stagedUnitPrices(address token) external view returns (uint256);

    /// @notice Timestamp after which staged unit prices for the given token can be committed.
    /// @param token Address of the token
    /// @return Timestamp
    function stagedUnitPricesTimestamps(address token) external view returns (uint256);

    /// @notice Estimated amount of token worth 1 USD.
    /// @param token Address of the token
    /// @return The amount of token
    function unitPrices(address token) external view returns (uint256);

    // -------------------  EXTERNAL, MUTATING  -------------------

    /// @notice Stage estimated amount of token worth 1 USD staged for commit.
    /// @param token Address of the token
    /// @param value The amount of token
    function stageUnitPrice(address token, uint256 value) external;

    /// @notice Reset staged value
    /// @param token Address of the token
    function rollbackUnitPrice(address token) external;

    /// @notice Commit staged unit price
    /// @param token Address of the token
    function commitUnitPrice(address token) external;
}

File 20 of 41 : IVaultRegistry.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.9;

import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "./IProtocolGovernance.sol";

interface IVaultRegistry is IERC721 {
    /// @notice Get Vault for the giver NFT ID.
    /// @param nftId NFT ID
    /// @return vault Address of the Vault contract
    function vaultForNft(uint256 nftId) external view returns (address vault);

    /// @notice Get NFT ID for given Vault contract address.
    /// @param vault Address of the Vault contract
    /// @return nftId NFT ID
    function nftForVault(address vault) external view returns (uint256 nftId);

    /// @notice Checks if the nft is locked for all transfers
    /// @param nft NFT to check for lock
    /// @return `true` if locked, false otherwise
    function isLocked(uint256 nft) external view returns (bool);

    /// @notice Register new Vault and mint NFT.
    /// @param vault address of the vault
    /// @param owner owner of the NFT
    /// @return nft Nft minted for the given Vault
    function registerVault(address vault, address owner) external returns (uint256 nft);

    /// @notice Number of Vaults registered.
    function vaultsCount() external view returns (uint256);

    /// @notice All Vaults registered.
    function vaults() external view returns (address[] memory);

    /// @notice Address of the ProtocolGovernance.
    function protocolGovernance() external view returns (IProtocolGovernance);

    /// @notice Address of the staged ProtocolGovernance.
    function stagedProtocolGovernance() external view returns (IProtocolGovernance);

    /// @notice Minimal timestamp when staged ProtocolGovernance can be applied.
    function stagedProtocolGovernanceTimestamp() external view returns (uint256);

    /// @notice Stage new ProtocolGovernance.
    /// @param newProtocolGovernance new ProtocolGovernance
    function stageProtocolGovernance(IProtocolGovernance newProtocolGovernance) external;

    /// @notice Commit new ProtocolGovernance.
    function commitStagedProtocolGovernance() external;

    /// @notice Lock NFT for transfers
    /// @dev Use this method when vault structure is set up and should become immutable. Can be called by owner.
    /// @param nft - NFT to lock
    function lockNft(uint256 nft) external;
}

File 21 of 41 : IERC1271.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface IERC1271 {
    /// @notice Verifies offchain signature.
    /// @dev Should return whether the signature provided is valid for the provided hash
    ///
    /// MUST return the bytes4 magic value 0x1626ba7e when function passes.
    ///
    /// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
    ///
    /// MUST allow external calls
    /// @param _hash Hash of the data to be signed
    /// @param _signature Signature byte array associated with _hash
    /// @return magicValue 0x1626ba7e if valid, 0xffffffff otherwise
    function isValidSignature(bytes32 _hash, bytes memory _signature) external view returns (bytes4 magicValue);
}

File 22 of 41 : IOracle.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface IOracle {
    /// @notice Oracle price for tokens as a Q64.96 value.
    /// @notice Returns pricing information based on the indexes of non-zero bits in safetyIndicesSet.
    /// @notice It is possible that not all indices will have their respective prices returned.
    /// @dev The price is token1 / token0 i.e. how many weis of token1 required for 1 wei of token0.
    /// The safety indexes are:
    ///
    /// 1 - unsafe, this is typically a spot price that can be easily manipulated,
    ///
    /// 2 - 4 - more or less safe, this is typically a uniV3 oracle, where the safety is defined by the timespan of the average price
    ///
    /// 5 - safe - this is typically a chailink oracle
    /// @param token0 Reference to token0
    /// @param token1 Reference to token1
    /// @param safetyIndicesSet Bitmask of safety indices that are allowed for the return prices. For set of safety indexes = { 1 }, safetyIndicesSet = 0x2
    /// @return pricesX96 Prices that satisfy safetyIndex and tokens
    /// @return safetyIndices Safety indices for those prices
    function priceX96(
        address token0,
        address token1,
        uint256 safetyIndicesSet
    ) external view returns (uint256[] memory pricesX96, uint256[] memory safetyIndices);
}

File 23 of 41 : IDefaultAccessControl.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "@openzeppelin/contracts/access/IAccessControlEnumerable.sol";

interface IDefaultAccessControl is IAccessControlEnumerable {
    /// @notice Checks that the address is contract admin.
    /// @param who Address to check
    /// @return `true` if who is admin, `false` otherwise
    function isAdmin(address who) external view returns (bool);

    /// @notice Checks that the address is contract admin.
    /// @param who Address to check
    /// @return `true` if who is operator, `false` otherwise
    function isOperator(address who) external view returns (bool);
}

File 24 of 41 : IERC20RootVaultHelper.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "../oracles/IOracle.sol";

interface IERC20RootVaultHelper {
    function getTvlToken0(
        uint256[] calldata tvls,
        address[] calldata tokens,
        IOracle oracle
    ) external view returns (uint256 tvl0);
}

File 25 of 41 : ILpCallback.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface ILpCallback {

    /// @notice Function, that ERC20RootVault calling after deposit
    function depositCallback(bytes memory) external;

    /// @notice Function, that ERC20RootVault calling after withdraw
    function withdrawCallback(bytes memory) external;
}

File 26 of 41 : IAggregateVault.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "./IVault.sol";
import "./IVaultRoot.sol";

interface IAggregateVault is IVault, IVaultRoot {}

File 27 of 41 : IERC20RootVault.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IAggregateVault.sol";
import "../utils/IERC20RootVaultHelper.sol";

interface IERC20RootVault is IAggregateVault, IERC20 {
    /// @notice Initialized a new contract.
    /// @dev Can only be initialized by vault governance
    /// @param nft_ NFT of the vault in the VaultRegistry
    /// @param vaultTokens_ ERC20 tokens that will be managed by this Vault
    /// @param strategy_ The address that will have approvals for subvaultNfts
    /// @param subvaultNfts_ The NFTs of the subvaults that will be aggregated by this ERC20RootVault
    function initialize(
        uint256 nft_,
        address[] memory vaultTokens_,
        address strategy_,
        uint256[] memory subvaultNfts_,
        IERC20RootVaultHelper helper_
    ) external;

    /// @notice The timestamp of last charging of fees
    function lastFeeCharge() external view returns (uint64);

    /// @notice The timestamp of last updating totalWithdrawnAmounts array
    function totalWithdrawnAmountsTimestamp() external view returns (uint64);

    /// @notice Returns value from totalWithdrawnAmounts array by _index
    /// @param _index The index at which the value will be returned
    function totalWithdrawnAmounts(uint256 _index) external view returns (uint256);

    /// @notice LP parameter that controls the charge in performance fees
    function lpPriceHighWaterMarkD18() external view returns (uint256);

    /// @notice List of addresses of depositors from which interaction with private vaults is allowed
    function depositorsAllowlist() external view returns (address[] memory);

    /// @notice Add new depositors in the depositorsAllowlist
    /// @param depositors Array of new depositors
    /// @dev The action can be done only by user with admins, owners or by approved rights
    function addDepositorsToAllowlist(address[] calldata depositors) external;

    /// @notice Remove depositors from the depositorsAllowlist
    /// @param depositors Array of depositors for remove
    /// @dev The action can be done only by user with admins, owners or by approved rights
    function removeDepositorsFromAllowlist(address[] calldata depositors) external;

    /// @notice The function of depositing the amount of tokens in exchange
    /// @param tokenAmounts Array of amounts of tokens for deposit
    /// @param minLpTokens Minimal value of LP tokens
    /// @param vaultOptions Options of vaults
    /// @return actualTokenAmounts Arrays of actual token amounts after deposit
    function deposit(
        uint256[] memory tokenAmounts,
        uint256 minLpTokens,
        bytes memory vaultOptions
    ) external returns (uint256[] memory actualTokenAmounts);

    /// @notice The function of withdrawing the amount of tokens in exchange
    /// @param to Address to which the withdrawal will be sent
    /// @param lpTokenAmount LP token amount, that requested for withdraw
    /// @param minTokenAmounts Array of minmal remining wtoken amounts after withdrawal
    /// @param vaultsOptions Options of vaults
    /// @return actualTokenAmounts Arrays of actual token amounts after withdrawal
    function withdraw(
        address to,
        uint256 lpTokenAmount,
        uint256[] memory minTokenAmounts,
        bytes[] memory vaultsOptions
    ) external returns (uint256[] memory actualTokenAmounts);
}

File 28 of 41 : IERC20RootVaultGovernance.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "../oracles/IOracle.sol";
import "./IERC20RootVault.sol";
import "./IVaultGovernance.sol";

interface IERC20RootVaultGovernance is IVaultGovernance {
    /// @notice Params that could be changed by Strategy or Protocol Governance with Protocol Governance delay.
    /// @param strategyTreasury Reference to address that will collect strategy management fees
    /// @param strategyPerformanceTreasury Reference to address that will collect strategy performance fees
    /// @param privateVault If true, only whitlisted depositors can deposit into the vault
    /// @param managementFee Management fee for Strategist denominated in 10 ** 9
    /// @param performanceFee Performance fee for Strategist denominated in 10 ** 9
    /// @param depositCallbackAddress Address of callback function after deposit
    /// @param withdrawCallbackAddress Address of callback function after withdraw
    struct DelayedStrategyParams {
        address strategyTreasury;
        address strategyPerformanceTreasury;
        bool privateVault;
        uint256 managementFee;
        uint256 performanceFee;
        address depositCallbackAddress;
        address withdrawCallbackAddress;
    }

    /// @notice Params that could be changed by Protocol Governance with Protocol Governance delay.
    /// @param managementFeeChargeDelay The minimal interval between management fee charges
    /// @param oracle Oracle for getting token prices
    struct DelayedProtocolParams {
        uint256 managementFeeChargeDelay;
        IOracle oracle;
    }

    /// @notice Params that could be changed by Strategy or Protocol Governance.
    /// @param tokenLimitPerAddress Max LP token limit per address
    /// @param tokenLimit Max LP token for the vault
    struct StrategyParams {
        uint256 tokenLimitPerAddress;
        uint256 tokenLimit;
        uint256 maxTimeOneRebalance;
        uint256 minTimeBetweenRebalances;
    }

    /// @notice Params that could be changed by Protocol Governance with Protocol Governance delay.
    /// @param protocolFee Management fee for Protocol denominated in 10 ** 9
    struct DelayedProtocolPerVaultParams {
        uint256 protocolFee;
    }

    /// @notice Params that could be changed by Operator role of Protocol Governance.
    /// @param disableDeposit Disable deposit for all ERC20 vaults
    struct OperatorParams {
        bool disableDeposit;
    }

    /// @notice Number of maximum protocol fee
    function MAX_PROTOCOL_FEE() external view returns (uint256);

    /// @notice Number of maximum management fee
    function MAX_MANAGEMENT_FEE() external view returns (uint256);

    /// @notice Number of maximum performance fee
    function MAX_PERFORMANCE_FEE() external view returns (uint256);

    /// @notice Delayed Protocol Params, i.e. Params that could be changed by Protocol Governance with Protocol Governance delay.
    function delayedProtocolParams() external view returns (DelayedProtocolParams memory);

    /// @notice Delayed Protocol Params staged for commit after delay.
    function stagedDelayedProtocolParams() external view returns (DelayedProtocolParams memory);

    /// @notice Delayed Protocol Per Vault Params, i.e. Params that could be changed by Protocol Governance with Protocol Governance delay.
    /// @param nft VaultRegistry NFT of the vault
    function delayedProtocolPerVaultParams(uint256 nft) external view returns (DelayedProtocolPerVaultParams memory);

    /// @notice Delayed Protocol Per Vault Params staged for commit after delay.
    /// @param nft VaultRegistry NFT of the vault
    function stagedDelayedProtocolPerVaultParams(uint256 nft)
        external
        view
        returns (DelayedProtocolPerVaultParams memory);

    /// @notice Strategy Params.
    /// @param nft VaultRegistry NFT of the vault
    function strategyParams(uint256 nft) external view returns (StrategyParams memory);

    /// @notice Operator Params.
    function operatorParams() external view returns (OperatorParams memory);

    /// @notice Delayed Strategy Params
    /// @param nft VaultRegistry NFT of the vault
    function delayedStrategyParams(uint256 nft) external view returns (DelayedStrategyParams memory);

    /// @notice Delayed Strategy Params staged for commit after delay.
    /// @param nft VaultRegistry NFT of the vault
    function stagedDelayedStrategyParams(uint256 nft) external view returns (DelayedStrategyParams memory);

    /// @notice Set Strategy params, i.e. Params that could be changed by Strategy or Protocol Governance immediately.
    /// @param nft Nft of the vault
    /// @param params New params
    function setStrategyParams(uint256 nft, StrategyParams calldata params) external;

    /// @notice Set Operator params, i.e. Params that could be changed by Operator or Protocol Governance immediately.
    /// @param params New params
    function setOperatorParams(OperatorParams calldata params) external;

    /// @notice Stage Delayed Protocol Per Vault Params, i.e. Params that could be changed by Protocol Governance with Protocol Governance delay.
    /// @param nft VaultRegistry NFT of the vault
    /// @param params New params
    function stageDelayedProtocolPerVaultParams(uint256 nft, DelayedProtocolPerVaultParams calldata params) external;

    /// @notice Commit Delayed Protocol Per Vault Params, i.e. Params that could be changed by Protocol Governance with Protocol Governance delay.
    /// @dev Can only be called after delayedProtocolPerVaultParamsTimestamp
    /// @param nft VaultRegistry NFT of the vault
    function commitDelayedProtocolPerVaultParams(uint256 nft) external;

    /// @notice Stage Delayed Strategy Params, i.e. Params that could be changed by Strategy or Protocol Governance with Protocol Governance delay.
    /// @param nft VaultRegistry NFT of the vault
    /// @param params New params
    function stageDelayedStrategyParams(uint256 nft, DelayedStrategyParams calldata params) external;

    /// @notice Commit Delayed Strategy Params, i.e. Params that could be changed by Strategy or Protocol Governance with Protocol Governance delay.
    /// @dev Can only be called after delayedStrategyParamsTimestamp
    /// @param nft VaultRegistry NFT of the vault
    function commitDelayedStrategyParams(uint256 nft) external;

    /// @notice Stage Delayed Protocol Params, i.e. Params that could be changed by Protocol Governance with Protocol Governance delay.
    /// @dev Can only be called after delayedProtocolParamsTimestamp.
    /// @param params New params
    function stageDelayedProtocolParams(DelayedProtocolParams calldata params) external;

    /// @notice Commit Delayed Protocol Params, i.e. Params that could be changed by Protocol Governance with Protocol Governance delay.
    function commitDelayedProtocolParams() external;

    /// @notice Deploys a new vault.
    /// @param vaultTokens_ ERC20 tokens that will be managed by this Vault
    /// @param strategy_ The address that will have approvals for subvaultNfts
    /// @param subvaultNfts_ The NFTs of the subvaults that will be aggregated by this ERC20RootVault
    /// @param owner_ Owner of the vault NFT
    function createVault(
        address[] memory vaultTokens_,
        address strategy_,
        uint256[] memory subvaultNfts_,
        address owner_
    ) external returns (IERC20RootVault vault, uint256 nft);
}

File 29 of 41 : IERC20Vault.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "./IIntegrationVault.sol";

interface IERC20Vault is IIntegrationVault {
    /// @notice Initialized a new contract.
    /// @dev Can only be initialized by vault governance
    /// @param nft_ NFT of the vault in the VaultRegistry
    /// @param vaultTokens_ ERC20 tokens that will be managed by this Vault
    function initialize(uint256 nft_, address[] memory vaultTokens_) external;
}

File 30 of 41 : IIntegrationVault.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "../external/erc/IERC1271.sol";
import "./IVault.sol";

interface IIntegrationVault is IVault, IERC1271 {
    /// @notice Pushes tokens on the vault balance to the underlying protocol. For example, for Yearn this operation will take USDC from
    /// the contract balance and convert it to yUSDC.
    /// @dev Tokens **must** be a subset of Vault Tokens. However, the convention is that if tokenAmount == 0 it is the same as token is missing.
    ///
    /// Also notice that this operation doesn't guarantee that tokenAmounts will be invested in full.
    /// @param tokens Tokens to push
    /// @param tokenAmounts Amounts of tokens to push
    /// @param options Additional options that could be needed for some vaults. E.g. for Uniswap this could be `deadline` param. For the exact bytes structure see concrete vault descriptions
    /// @return actualTokenAmounts The amounts actually invested. It could be less than tokenAmounts (but not higher)
    function push(
        address[] memory tokens,
        uint256[] memory tokenAmounts,
        bytes memory options
    ) external returns (uint256[] memory actualTokenAmounts);

    /// @notice The same as `push` method above but transfers tokens to vault balance prior to calling push.
    /// After the `push` it returns all the leftover tokens back (`push` method doesn't guarantee that tokenAmounts will be invested in full).
    /// @param tokens Tokens to push
    /// @param tokenAmounts Amounts of tokens to push
    /// @param options Additional options that could be needed for some vaults. E.g. for Uniswap this could be `deadline` param. For the exact bytes structure see concrete vault descriptions
    /// @return actualTokenAmounts The amounts actually invested. It could be less than tokenAmounts (but not higher)
    function transferAndPush(
        address from,
        address[] memory tokens,
        uint256[] memory tokenAmounts,
        bytes memory options
    ) external returns (uint256[] memory actualTokenAmounts);

    /// @notice Pulls tokens from the underlying protocol to the `to` address.
    /// @dev Can only be called but Vault Owner or Strategy. Vault owner is the owner of NFT for this vault in VaultManager.
    /// Strategy is approved address for the vault NFT.
    /// When called by vault owner this method just pulls the tokens from the protocol to the `to` address
    /// When called by strategy on vault other than zero vault it pulls the tokens to zero vault (required `to` == zero vault)
    /// When called by strategy on zero vault it pulls the tokens to zero vault, pushes tokens on the `to` vault, and reclaims everything that's left.
    /// Thus any vault other than zero vault cannot have any tokens on it
    ///
    /// Tokens **must** be a subset of Vault Tokens. However, the convention is that if tokenAmount == 0 it is the same as token is missing.
    ///
    /// Pull is fulfilled on the best effort basis, i.e. if the tokenAmounts overflows available funds it withdraws all the funds.
    /// @param to Address to receive the tokens
    /// @param tokens Tokens to pull
    /// @param tokenAmounts Amounts of tokens to pull
    /// @param options Additional options that could be needed for some vaults. E.g. for Uniswap this could be `deadline` param. For the exact bytes structure see concrete vault descriptions
    /// @return actualTokenAmounts The amounts actually withdrawn. It could be less than tokenAmounts (but not higher)
    function pull(
        address to,
        address[] memory tokens,
        uint256[] memory tokenAmounts,
        bytes memory options
    ) external returns (uint256[] memory actualTokenAmounts);

    /// @notice Claim ERC20 tokens from vault balance to zero vault.
    /// @dev Cannot be called from zero vault.
    /// @param tokens Tokens to claim
    /// @return actualTokenAmounts Amounts reclaimed
    function reclaimTokens(address[] memory tokens) external returns (uint256[] memory actualTokenAmounts);

    /// @notice Execute one of whitelisted calls.
    /// @dev Can only be called by Vault Owner or Strategy. Vault owner is the owner of NFT for this vault in VaultManager.
    /// Strategy is approved address for the vault NFT.
    ///
    /// Since this method allows sending arbitrary transactions, the destinations of the calls
    /// are whitelisted by Protocol Governance.
    /// @param to Address of the reward pool
    /// @param selector Selector of the call
    /// @param data Abi encoded parameters to `to::selector`
    /// @return result Result of execution of the call
    function externalCall(
        address to,
        bytes4 selector,
        bytes memory data
    ) external payable returns (bytes memory result);
}

File 31 of 41 : IVault.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "./IVaultGovernance.sol";

interface IVault is IERC165 {
    /// @notice Checks if the vault is initialized

    function initialized() external view returns (bool);

    /// @notice VaultRegistry NFT for this vault
    function nft() external view returns (uint256);

    /// @notice Address of the Vault Governance for this contract.
    function vaultGovernance() external view returns (IVaultGovernance);

    /// @notice ERC20 tokens under Vault management.
    function vaultTokens() external view returns (address[] memory);

    /// @notice Checks if a token is vault token
    /// @param token Address of the token to check
    /// @return `true` if this token is managed by Vault
    function isVaultToken(address token) external view returns (bool);

    /// @notice Total value locked for this contract.
    /// @dev Generally it is the underlying token value of this contract in some
    /// other DeFi protocol. For example, for USDC Yearn Vault this would be total USDC balance that could be withdrawn for Yearn to this contract.
    /// The tvl itself is estimated in some range. Sometimes the range is exact, sometimes it's not
    /// @return minTokenAmounts Lower bound for total available balances estimation (nth tokenAmount corresponds to nth token in vaultTokens)
    /// @return maxTokenAmounts Upper bound for total available balances estimation (nth tokenAmount corresponds to nth token in vaultTokens)
    function tvl() external view returns (uint256[] memory minTokenAmounts, uint256[] memory maxTokenAmounts);

    /// @notice Existential amounts for each token
    function pullExistentials() external view returns (uint256[] memory);
}

File 32 of 41 : IVaultGovernance.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "../IProtocolGovernance.sol";
import "../IVaultRegistry.sol";
import "./IVault.sol";

interface IVaultGovernance {
    /// @notice Internal references of the contract.
    /// @param protocolGovernance Reference to Protocol Governance
    /// @param registry Reference to Vault Registry
    struct InternalParams {
        IProtocolGovernance protocolGovernance;
        IVaultRegistry registry;
        IVault singleton;
    }

    // -------------------  EXTERNAL, VIEW  -------------------

    /// @notice Timestamp in unix time seconds after which staged Delayed Strategy Params could be committed.
    /// @param nft Nft of the vault
    function delayedStrategyParamsTimestamp(uint256 nft) external view returns (uint256);

    /// @notice Timestamp in unix time seconds after which staged Delayed Protocol Params could be committed.
    function delayedProtocolParamsTimestamp() external view returns (uint256);

    /// @notice Timestamp in unix time seconds after which staged Delayed Protocol Params Per Vault could be committed.
    /// @param nft Nft of the vault
    function delayedProtocolPerVaultParamsTimestamp(uint256 nft) external view returns (uint256);

    /// @notice Timestamp in unix time seconds after which staged Internal Params could be committed.
    function internalParamsTimestamp() external view returns (uint256);

    /// @notice Internal Params of the contract.
    function internalParams() external view returns (InternalParams memory);

    /// @notice Staged new Internal Params.
    /// @dev The Internal Params could be committed after internalParamsTimestamp
    function stagedInternalParams() external view returns (InternalParams memory);

    // -------------------  EXTERNAL, MUTATING  -------------------

    /// @notice Stage new Internal Params.
    /// @param newParams New Internal Params
    function stageInternalParams(InternalParams memory newParams) external;

    /// @notice Commit staged Internal Params.
    function commitInternalParams() external;
}

File 33 of 41 : IVaultRoot.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface IVaultRoot {
    /// @notice Checks if subvault is present
    /// @param nft_ index of subvault for check
    /// @return `true` if subvault present, `false` otherwise
    function hasSubvault(uint256 nft_) external view returns (bool);

    /// @notice Get subvault by index
    /// @param index Index of subvault
    /// @return address Address of the contract
    function subvaultAt(uint256 index) external view returns (address);

    /// @notice Get index of subvault by nft
    /// @param nft_ Nft for getting subvault
    /// @return index Index of subvault
    function subvaultOneBasedIndex(uint256 nft_) external view returns (uint256);

    /// @notice Get all subvalutNfts in the current Vault
    /// @return subvaultNfts Subvaults of NTFs
    function subvaultNfts() external view returns (uint256[] memory);
}

File 34 of 41 : CommonLibrary.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "./external/FullMath.sol";
import "./ExceptionsLibrary.sol";

/// @notice CommonLibrary shared utilities
library CommonLibrary {
    uint256 constant DENOMINATOR = 10**9;
    uint256 constant D18 = 10**18;
    uint256 constant YEAR = 365 * 24 * 3600;
    uint256 constant Q128 = 2**128;
    uint256 constant Q96 = 2**96;
    uint256 constant Q48 = 2**48;
    uint256 constant Q160 = 2**160;
    uint256 constant UNI_FEE_DENOMINATOR = 10**6;

    /// @notice Sort uint256 using bubble sort. The sorting is done in-place.
    /// @param arr Array of uint256
    function sortUint(uint256[] memory arr) internal pure {
        uint256 l = arr.length;
        for (uint256 i = 0; i < l; ++i) {
            for (uint256 j = i + 1; j < l; ++j) {
                if (arr[i] > arr[j]) {
                    uint256 temp = arr[i];
                    arr[i] = arr[j];
                    arr[j] = temp;
                }
            }
        }
    }

    /// @notice Checks if array of addresses is sorted and all adresses are unique
    /// @param tokens A set of addresses to check
    /// @return `true` if all addresses are sorted and unique, `false` otherwise
    function isSortedAndUnique(address[] memory tokens) internal pure returns (bool) {
        if (tokens.length < 2) {
            return true;
        }
        for (uint256 i = 0; i < tokens.length - 1; ++i) {
            if (tokens[i] >= tokens[i + 1]) {
                return false;
            }
        }
        return true;
    }

    /// @notice Projects tokenAmounts onto subset or superset of tokens
    /// @dev
    /// Requires both sets of tokens to be sorted. When tokens are not sorted, it's undefined behavior.
    /// If there is a token in tokensToProject that is not part of tokens and corresponding tokenAmountsToProject > 0, reverts.
    /// Zero token amount is eqiuvalent to missing token
    function projectTokenAmounts(
        address[] memory tokens,
        address[] memory tokensToProject,
        uint256[] memory tokenAmountsToProject
    ) internal pure returns (uint256[] memory) {
        uint256[] memory res = new uint256[](tokens.length);
        uint256 t = 0;
        uint256 tp = 0;
        while ((t < tokens.length) && (tp < tokensToProject.length)) {
            if (tokens[t] < tokensToProject[tp]) {
                res[t] = 0;
                t++;
            } else if (tokens[t] > tokensToProject[tp]) {
                if (tokenAmountsToProject[tp] == 0) {
                    tp++;
                } else {
                    revert("TPS");
                }
            } else {
                res[t] = tokenAmountsToProject[tp];
                t++;
                tp++;
            }
        }
        while (t < tokens.length) {
            res[t] = 0;
            t++;
        }
        return res;
    }

    /// @notice Calculated sqrt of uint in X96 format
    /// @param xX96 input number in X96 format
    /// @return sqrt of xX96 in X96 format
    function sqrtX96(uint256 xX96) internal pure returns (uint256) {
        uint256 sqX96 = sqrt(xX96);
        return sqX96 << 48;
    }

    /// @notice Calculated sqrt of uint
    /// @param x input number
    /// @return sqrt of x
    function sqrt(uint256 x) internal pure returns (uint256) {
        if (x == 0) return 0;
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) {
            xx >>= 128;
            r <<= 64;
        }
        if (xx >= 0x10000000000000000) {
            xx >>= 64;
            r <<= 32;
        }
        if (xx >= 0x100000000) {
            xx >>= 32;
            r <<= 16;
        }
        if (xx >= 0x10000) {
            xx >>= 16;
            r <<= 8;
        }
        if (xx >= 0x100) {
            xx >>= 8;
            r <<= 4;
        }
        if (xx >= 0x10) {
            xx >>= 4;
            r <<= 2;
        }
        if (xx >= 0x8) {
            r <<= 1;
        }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        uint256 r1 = x / r;
        return (r < r1 ? r : r1);
    }

    /// @notice Recovers signer address from signed message hash
    /// @param _ethSignedMessageHash signed message
    /// @param _signature contatenated ECDSA r, s, v (65 bytes)
    /// @return Recovered address if the signature is valid, address(0) otherwise
    function recoverSigner(bytes32 _ethSignedMessageHash, bytes memory _signature) internal pure returns (address) {
        (bytes32 r, bytes32 s, uint8 v) = splitSignature(_signature);

        return ecrecover(_ethSignedMessageHash, v, r, s);
    }

    /// @notice Get ECDSA r, s, v from signature
    /// @param sig signature (65 bytes)
    /// @return r ECDSA r
    /// @return s ECDSA s
    /// @return v ECDSA v
    function splitSignature(bytes memory sig)
        internal
        pure
        returns (
            bytes32 r,
            bytes32 s,
            uint8 v
        )
    {
        require(sig.length == 65, ExceptionsLibrary.INVALID_LENGTH);

        assembly {
            r := mload(add(sig, 32))
            s := mload(add(sig, 64))
            v := byte(0, mload(add(sig, 96)))
        }
    }
}

File 35 of 41 : ExceptionsLibrary.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

/// @notice Exceptions stores project`s smart-contracts exceptions
library ExceptionsLibrary {
    string constant ADDRESS_ZERO = "AZ";
    string constant VALUE_ZERO = "VZ";
    string constant EMPTY_LIST = "EMPL";
    string constant NOT_FOUND = "NF";
    string constant INIT = "INIT";
    string constant DUPLICATE = "DUP";
    string constant NULL = "NULL";
    string constant TIMESTAMP = "TS";
    string constant FORBIDDEN = "FRB";
    string constant ALLOWLIST = "ALL";
    string constant LIMIT_OVERFLOW = "LIMO";
    string constant LIMIT_UNDERFLOW = "LIMU";
    string constant INVALID_VALUE = "INV";
    string constant INVARIANT = "INVA";
    string constant INVALID_TARGET = "INVTR";
    string constant INVALID_TOKEN = "INVTO";
    string constant INVALID_INTERFACE = "INVI";
    string constant INVALID_SELECTOR = "INVS";
    string constant INVALID_STATE = "INVST";
    string constant INVALID_LENGTH = "INVL";
    string constant LOCK = "LCKD";
    string constant DISABLED = "DIS";
}

File 36 of 41 : PermissionIdsLibrary.sol
//SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

/// @notice Stores permission ids for addresses
library PermissionIdsLibrary {
    // The msg.sender is allowed to register vault
    uint8 constant REGISTER_VAULT = 0;
    // The msg.sender is allowed to create vaults
    uint8 constant CREATE_VAULT = 1;
    // The token is allowed to be transfered by vault
    uint8 constant ERC20_TRANSFER = 2;
    // The token is allowed to be added to vault
    uint8 constant ERC20_VAULT_TOKEN = 3;
    // Trusted protocols that are allowed to be approved of vault ERC20 tokens by any strategy
    uint8 constant ERC20_APPROVE = 4;
    // Trusted protocols that are allowed to be approved of vault ERC20 tokens by trusted strategy
    uint8 constant ERC20_APPROVE_RESTRICTED = 5;
    // Strategy allowed using restricted API
    uint8 constant TRUSTED_STRATEGY = 6;
}

File 37 of 41 : FullMath.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.9;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // diff: original lib works under 0.7.6 with overflows enabled
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            // diff: original uint256 twos = -denominator & denominator;
            uint256 twos = uint256(-int256(denominator)) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // diff: original lib works under 0.7.6 with overflows enabled
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

File 38 of 41 : ERC20Token.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity =0.8.9;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../libraries/ExceptionsLibrary.sol";

contract ERC20Token is IERC20 {
    bytes32 public constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    uint8 public constant decimals = 18;

    mapping(address => uint256) public balanceOf;
    mapping(address => mapping(address => uint256)) public allowance;
    uint256 public totalSupply;
    string public name;
    string public symbol;

    uint256 private immutable _chainId;
    bytes32 private _cachedDomainSeparator;
    mapping(address => uint256) public nonces;

    constructor() {
        _chainId = block.chainid;
    }

    // -------------------  EXTERNAL, VIEW  -------------------

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == _chainId ? _cachedDomainSeparator : calculateDomainSeparator();
    }

    // -------------------  EXTERNAL, MUTATING  -------------------

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;
        emit Approval(msg.sender, spender, amount);
        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);
        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender];

        if (allowed != type(uint256).max) {
            allowance[from][msg.sender] = allowed - amount;
        }

        balanceOf[from] -= amount;

        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);
        return true;
    }

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, ExceptionsLibrary.TIMESTAMP);

        unchecked {
            bytes32 digest = keccak256(
                abi.encodePacked(
                    "\x19\x01",
                    DOMAIN_SEPARATOR(),
                    keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner], deadline))
                )
            );
            nonces[owner] += 1;
            address recoveredAddress = ecrecover(digest, v, r, s);
            require(recoveredAddress != address(0) && recoveredAddress == owner, ExceptionsLibrary.FORBIDDEN);
            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    // -------------------  INTERNAL, VIEW  -------------------

    function calculateDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    // -------------------  INTERNAL, MUTATING  -------------------

    function _initERC20(string memory _name, string memory _symbol) internal {
        name = _name;
        symbol = _symbol;
        _cachedDomainSeparator = calculateDomainSeparator();
    }

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

File 39 of 41 : AggregateVault.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.9;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../interfaces/vaults/IIntegrationVault.sol";
import "../interfaces/vaults/IERC20Vault.sol";
import "../interfaces/vaults/IVaultRoot.sol";
import "../interfaces/vaults/IAggregateVault.sol";
import "./Vault.sol";
import "../libraries/ExceptionsLibrary.sol";

/// @notice Vault that combines several integration layer Vaults into one Vault.
contract AggregateVault is IAggregateVault, Vault {
    using SafeERC20 for IERC20;
    uint256[] private _subvaultNfts;
    mapping(uint256 => uint256) private _subvaultNftsIndex;

    // -------------------  EXTERNAL, VIEW  -------------------

    /// @inheritdoc IVaultRoot
    function subvaultNfts() external view returns (uint256[] memory) {
        return _subvaultNfts;
    }

    /// @inheritdoc IVaultRoot
    function subvaultOneBasedIndex(uint256 nft_) external view returns (uint256) {
        return _subvaultNftsIndex[nft_];
    }

    /// @inheritdoc IVaultRoot
    function hasSubvault(uint256 nft_) external view returns (bool) {
        return (_subvaultNftsIndex[nft_] > 0);
    }

    /// @inheritdoc IVaultRoot
    function subvaultAt(uint256 index) external view returns (address) {
        uint256 subvaultNft = _subvaultNfts[index];
        return _vaultGovernance.internalParams().registry.vaultForNft(subvaultNft);
    }

    /// @inheritdoc IVault
    function tvl()
        public
        view
        override(IVault, Vault)
        returns (uint256[] memory minTokenAmounts, uint256[] memory maxTokenAmounts)
    {
        IVaultRegistry registry = _vaultGovernance.internalParams().registry;
        address[] memory vaultTokens = _vaultTokens;
        minTokenAmounts = new uint256[](vaultTokens.length);
        maxTokenAmounts = new uint256[](vaultTokens.length);
        for (uint256 i = 0; i < _subvaultNfts.length; ++i) {
            IIntegrationVault vault = IIntegrationVault(registry.vaultForNft(_subvaultNfts[i]));
            (uint256[] memory sMinTokenAmounts, uint256[] memory sMaxTokenAmounts) = vault.tvl();
            address[] memory subvaultTokens = vault.vaultTokens();
            uint256 subvaultTokenId = 0;
            for (
                uint256 tokenId = 0;
                tokenId < vaultTokens.length && subvaultTokenId < subvaultTokens.length;
                ++tokenId
            ) {
                if (subvaultTokens[subvaultTokenId] == vaultTokens[tokenId]) {
                    minTokenAmounts[tokenId] += sMinTokenAmounts[subvaultTokenId];
                    maxTokenAmounts[tokenId] += sMaxTokenAmounts[subvaultTokenId];
                    ++subvaultTokenId;
                }
            }
        }
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, Vault) returns (bool) {
        return super.supportsInterface(interfaceId) || type(IAggregateVault).interfaceId == interfaceId;
    }

    // -------------------  INTERNAL, MUTATING  -------------------

    function _initialize(
        address[] memory vaultTokens_,
        uint256 nft_,
        address strategy_,
        uint256[] memory subvaultNfts_
    ) internal virtual {
        IVaultRegistry vaultRegistry = IVaultGovernance(msg.sender).internalParams().registry;
        for (uint256 i = 0; i < subvaultNfts_.length; i++) {
            // Significant amount of checks has been done in ERC20RootVaultGovernance in the createVault function to reduce contract size
            uint256 subvaultNft = subvaultNfts_[i];
            require(vaultRegistry.ownerOf(subvaultNft) == address(this), ExceptionsLibrary.FORBIDDEN);
            require(_subvaultNftsIndex[subvaultNft] == 0, ExceptionsLibrary.DUPLICATE);
            vaultRegistry.approve(strategy_, subvaultNft);
            vaultRegistry.lockNft(subvaultNft);
            _subvaultNftsIndex[subvaultNft] = i + 1;
        }
        _subvaultNfts = subvaultNfts_;
        _initialize(vaultTokens_, nft_);
    }

    function _push(uint256[] memory tokenAmounts, bytes memory vaultOptions)
        internal
        returns (uint256[] memory actualTokenAmounts)
    {
        require(_nft != 0, ExceptionsLibrary.INIT);
        IVaultGovernance.InternalParams memory params = _vaultGovernance.internalParams();
        uint256 destNft = _subvaultNfts[0];
        IVaultRegistry registry = params.registry;
        IIntegrationVault destVault = IIntegrationVault(registry.vaultForNft(destNft));
        for (uint256 i = 0; i < _vaultTokens.length; i++) {
            if (tokenAmounts[i] > 0) {
                IERC20(_vaultTokens[i]).safeIncreaseAllowance(address(destVault), tokenAmounts[i]);
            }
        }

        actualTokenAmounts = destVault.transferAndPush(address(this), _vaultTokens, tokenAmounts, vaultOptions);

        for (uint256 i = 0; i < _vaultTokens.length; i++) {
            if (tokenAmounts[i] > 0) {
                IERC20(_vaultTokens[i]).safeApprove(address(destVault), 0);
            }
        }
    }

    function _pull(
        address to,
        uint256[] memory tokenAmounts,
        bytes[] memory vaultsOptions
    ) internal returns (uint256[] memory actualTokenAmounts) {
        require(_nft != 0, ExceptionsLibrary.INIT);
        require(vaultsOptions.length == _subvaultNfts.length, ExceptionsLibrary.INVALID_LENGTH);
        IVaultRegistry vaultRegistry = _vaultGovernance.internalParams().registry;
        actualTokenAmounts = new uint256[](tokenAmounts.length);
        address[] memory tokens = _vaultTokens;
        uint256[] memory existentials = _pullExistentials;
        uint256[] memory leftToPull = new uint256[](tokenAmounts.length);
        for (uint256 i = 0; i < tokens.length; i++) {
            leftToPull[i] = tokenAmounts[i];
        }
        for (uint256 i = 0; i < _subvaultNfts.length; i++) {
            uint256 subvaultNft = _subvaultNfts[i];
            IIntegrationVault subvault = IIntegrationVault(vaultRegistry.vaultForNft(subvaultNft));
            uint256[] memory pulledAmounts = subvault.pull(address(this), tokens, leftToPull, vaultsOptions[i]);
            bool shouldStop = true;
            for (uint256 j = 0; j < tokens.length; j++) {
                if (leftToPull[j] > pulledAmounts[j] + existentials[j]) {
                    shouldStop = false;
                    leftToPull[j] -= pulledAmounts[j];
                } else {
                    leftToPull[j] = 0;
                }
            }
            if (shouldStop) {
                break;
            }
        }
        address subvault0 = vaultRegistry.vaultForNft(_subvaultNfts[0]);

        for (uint256 i = 0; i < tokens.length; i++) {
            uint256 balance = IERC20(tokens[i]).balanceOf(address(this));
            if (tokenAmounts[i] < balance) {
                actualTokenAmounts[i] = tokenAmounts[i];
                IERC20(tokens[i]).safeTransfer(to, tokenAmounts[i]);
                IERC20(tokens[i]).safeTransfer(subvault0, balance - tokenAmounts[i]);
            } else {
                actualTokenAmounts[i] = balance;
                IERC20(tokens[i]).safeTransfer(to, balance);
            }
        }
    }
}

File 40 of 41 : Vault.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.9;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "../libraries/CommonLibrary.sol";
import "../libraries/ExceptionsLibrary.sol";
import "../interfaces/vaults/IVault.sol";
import "./VaultGovernance.sol";

/// @notice Abstract contract that has logic common for every Vault.
/// @dev Notes:
/// ### ERC-721
///
/// Each Vault should be registered in VaultRegistry and get corresponding VaultRegistry NFT.
///
/// ### Access control
///
/// `push` and `pull` methods are only allowed for owner / approved person of the NFT. However,
/// `pull` for approved person also checks that pull destination is another vault of the Vault System.
///
/// The semantics is: NFT owner owns all Vault liquidity, Approved person is liquidity manager.
/// ApprovedForAll person cannot do anything except ERC-721 token transfers.
///
/// Both NFT owner and approved person can call externalCall method which claims liquidity mining rewards (if any)
///
/// `reclaimTokens` for mistakenly transfered tokens (not included into vaultTokens) additionally can be withdrawn by
/// the protocol admin
abstract contract Vault is IVault, ERC165 {
    using SafeERC20 for IERC20;

    IVaultGovernance internal _vaultGovernance;
    address[] internal _vaultTokens;
    mapping(address => int256) internal _vaultTokensIndex;
    uint256 internal _nft;
    uint256[] internal _pullExistentials;

    constructor() {
        // lock initialization and thus all mutations for any deployed Vault
        _nft = type(uint256).max;
    }

    // -------------------  EXTERNAL, VIEW  -------------------

    /// @inheritdoc IVault
    function initialized() external view returns (bool) {
        return _nft != 0;
    }

    /// @inheritdoc IVault
    function isVaultToken(address token) public view returns (bool) {
        return _vaultTokensIndex[token] != 0;
    }

    /// @inheritdoc IVault
    function vaultGovernance() external view returns (IVaultGovernance) {
        return _vaultGovernance;
    }

    /// @inheritdoc IVault
    function vaultTokens() external view returns (address[] memory) {
        return _vaultTokens;
    }

    /// @inheritdoc IVault
    function nft() external view returns (uint256) {
        return _nft;
    }

    /// @inheritdoc IVault
    function tvl() public view virtual returns (uint256[] memory minTokenAmounts, uint256[] memory maxTokenAmounts);

    /// @inheritdoc IVault
    function pullExistentials() external view returns (uint256[] memory) {
        return _pullExistentials;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
        return super.supportsInterface(interfaceId) || (interfaceId == type(IVault).interfaceId);
    }

    // -------------------  INTERNAL, MUTATING  -------------------

    function _initialize(address[] memory vaultTokens_, uint256 nft_) internal virtual {
        require(_nft == 0, ExceptionsLibrary.INIT);
        require(CommonLibrary.isSortedAndUnique(vaultTokens_), ExceptionsLibrary.INVARIANT);
        require(nft_ != 0, ExceptionsLibrary.VALUE_ZERO); // guarantees that this method can only be called once
        IProtocolGovernance governance = IVaultGovernance(msg.sender).internalParams().protocolGovernance;
        require(
            vaultTokens_.length > 0 && vaultTokens_.length <= governance.maxTokensPerVault(),
            ExceptionsLibrary.INVALID_VALUE
        );
        for (uint256 i = 0; i < vaultTokens_.length; i++) {
            require(
                governance.hasPermission(vaultTokens_[i], PermissionIdsLibrary.ERC20_VAULT_TOKEN),
                ExceptionsLibrary.FORBIDDEN
            );
        }
        _vaultGovernance = IVaultGovernance(msg.sender);
        _vaultTokens = vaultTokens_;
        _nft = nft_;
        uint256 len = _vaultTokens.length;
        for (uint256 i = 0; i < len; ++i) {
            _vaultTokensIndex[vaultTokens_[i]] = int256(i + 1);

            IERC20Metadata token = IERC20Metadata(vaultTokens_[i]);
            _pullExistentials.push(10**(token.decimals() / 2));
        }
        emit Initialized(tx.origin, msg.sender, vaultTokens_, nft_);
    }

    // --------------------------  EVENTS  --------------------------

    /// @notice Emitted when Vault is intialized
    /// @param origin Origin of the transaction (tx.origin)
    /// @param sender Sender of the call (msg.sender)
    /// @param vaultTokens_ ERC20 tokens under the vault management
    /// @param nft_ VaultRegistry NFT assigned to the vault
    event Initialized(address indexed origin, address indexed sender, address[] vaultTokens_, uint256 nft_);
}

File 41 of 41 : VaultGovernance.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.9;

import "@openzeppelin/contracts/proxy/Clones.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "../interfaces/IProtocolGovernance.sol";
import "../interfaces/vaults/IVaultGovernance.sol";
import "../libraries/ExceptionsLibrary.sol";
import "../libraries/PermissionIdsLibrary.sol";

/// @notice Internal contract for managing different params.
/// @dev The contract should be overriden by the concrete VaultGovernance,
/// define different params structs and use abi.decode / abi.encode to serialize
/// to bytes in this contract. It also should emit events on params change.
abstract contract VaultGovernance is IVaultGovernance, ERC165 {
    InternalParams internal _internalParams;
    InternalParams private _stagedInternalParams;
    uint256 internal _internalParamsTimestamp;

    mapping(uint256 => bytes) internal _delayedStrategyParams;
    mapping(uint256 => bytes) internal _stagedDelayedStrategyParams;
    mapping(uint256 => uint256) internal _delayedStrategyParamsTimestamp;

    mapping(uint256 => bytes) internal _delayedProtocolPerVaultParams;
    mapping(uint256 => bytes) internal _stagedDelayedProtocolPerVaultParams;
    mapping(uint256 => uint256) internal _delayedProtocolPerVaultParamsTimestamp;

    bytes internal _delayedProtocolParams;
    bytes internal _stagedDelayedProtocolParams;
    uint256 internal _delayedProtocolParamsTimestamp;

    mapping(uint256 => bytes) internal _strategyParams;
    bytes internal _protocolParams;
    bytes internal _operatorParams;

    /// @notice Creates a new contract.
    /// @param internalParams_ Initial Internal Params
    constructor(InternalParams memory internalParams_) {
        require(address(internalParams_.protocolGovernance) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
        require(address(internalParams_.registry) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
        require(address(internalParams_.singleton) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
        _internalParams = internalParams_;
    }

    // -------------------  EXTERNAL, VIEW  -------------------

    /// @inheritdoc IVaultGovernance
    function delayedStrategyParamsTimestamp(uint256 nft) external view returns (uint256) {
        return _delayedStrategyParamsTimestamp[nft];
    }

    /// @inheritdoc IVaultGovernance
    function delayedProtocolPerVaultParamsTimestamp(uint256 nft) external view returns (uint256) {
        return _delayedProtocolPerVaultParamsTimestamp[nft];
    }

    /// @inheritdoc IVaultGovernance
    function delayedProtocolParamsTimestamp() external view returns (uint256) {
        return _delayedProtocolParamsTimestamp;
    }

    /// @inheritdoc IVaultGovernance
    function internalParamsTimestamp() external view returns (uint256) {
        return _internalParamsTimestamp;
    }

    /// @inheritdoc IVaultGovernance
    function internalParams() external view returns (InternalParams memory) {
        return _internalParams;
    }

    /// @inheritdoc IVaultGovernance
    function stagedInternalParams() external view returns (InternalParams memory) {
        return _stagedInternalParams;
    }

    function supportsInterface(bytes4 interfaceID) public view virtual override(ERC165) returns (bool) {
        return super.supportsInterface(interfaceID) || interfaceID == type(IVaultGovernance).interfaceId;
    }

    // -------------------  EXTERNAL, MUTATING  -------------------

    /// @inheritdoc IVaultGovernance
    function stageInternalParams(InternalParams memory newParams) external {
        _requireProtocolAdmin();
        require(address(newParams.protocolGovernance) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
        require(address(newParams.registry) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
        require(address(newParams.singleton) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
        _stagedInternalParams = newParams;
        _internalParamsTimestamp = block.timestamp + _internalParams.protocolGovernance.governanceDelay();
        emit StagedInternalParams(tx.origin, msg.sender, newParams, _internalParamsTimestamp);
    }

    /// @inheritdoc IVaultGovernance
    function commitInternalParams() external {
        _requireProtocolAdmin();
        require(_internalParamsTimestamp != 0, ExceptionsLibrary.NULL);
        require(block.timestamp >= _internalParamsTimestamp, ExceptionsLibrary.TIMESTAMP);
        _internalParams = _stagedInternalParams;
        delete _internalParamsTimestamp;
        delete _stagedInternalParams;
        emit CommitedInternalParams(tx.origin, msg.sender, _internalParams);
    }

    // -------------------  INTERNAL, VIEW  -------------------

    function _requireAtLeastStrategy(uint256 nft) internal view {
        require(
            (_internalParams.protocolGovernance.isAdmin(msg.sender) ||
                _internalParams.registry.getApproved(nft) == msg.sender ||
                (_internalParams.registry.ownerOf(nft) == msg.sender)),
            ExceptionsLibrary.FORBIDDEN
        );
    }

    function _requireProtocolAdmin() internal view {
        require(_internalParams.protocolGovernance.isAdmin(msg.sender), ExceptionsLibrary.FORBIDDEN);
    }

    function _requireAtLeastOperator() internal view {
        IProtocolGovernance governance = _internalParams.protocolGovernance;
        require(governance.isAdmin(msg.sender) || governance.isOperator(msg.sender), ExceptionsLibrary.FORBIDDEN);
    }

    // -------------------  INTERNAL, MUTATING  -------------------

    function _createVault(address owner) internal returns (address vault, uint256 nft) {
        IProtocolGovernance protocolGovernance = IProtocolGovernance(_internalParams.protocolGovernance);
        require(
            protocolGovernance.hasPermission(msg.sender, PermissionIdsLibrary.CREATE_VAULT),
            ExceptionsLibrary.FORBIDDEN
        );
        IVaultRegistry vaultRegistry = _internalParams.registry;
        nft = vaultRegistry.vaultsCount() + 1;
        vault = Clones.cloneDeterministic(address(_internalParams.singleton), bytes32(nft));
        vaultRegistry.registerVault(address(vault), owner);
    }

    /// @notice Set Delayed Strategy Params
    /// @param nft Nft of the vault
    /// @param params New params
    function _stageDelayedStrategyParams(uint256 nft, bytes memory params) internal {
        _requireAtLeastStrategy(nft);
        _stagedDelayedStrategyParams[nft] = params;
        uint256 delayFactor = _delayedStrategyParams[nft].length == 0 ? 0 : 1;
        _delayedStrategyParamsTimestamp[nft] =
            block.timestamp +
            _internalParams.protocolGovernance.governanceDelay() *
            delayFactor;
    }

    /// @notice Commit Delayed Strategy Params
    function _commitDelayedStrategyParams(uint256 nft) internal {
        _requireAtLeastStrategy(nft);
        uint256 thisDelayedStrategyParamsTimestamp = _delayedStrategyParamsTimestamp[nft];
        require(thisDelayedStrategyParamsTimestamp != 0, ExceptionsLibrary.NULL);
        require(block.timestamp >= thisDelayedStrategyParamsTimestamp, ExceptionsLibrary.TIMESTAMP);
        _delayedStrategyParams[nft] = _stagedDelayedStrategyParams[nft];
        delete _stagedDelayedStrategyParams[nft];
        delete _delayedStrategyParamsTimestamp[nft];
    }

    /// @notice Set Delayed Protocol Per Vault Params
    /// @param nft Nft of the vault
    /// @param params New params
    function _stageDelayedProtocolPerVaultParams(uint256 nft, bytes memory params) internal {
        _requireProtocolAdmin();
        _stagedDelayedProtocolPerVaultParams[nft] = params;
        uint256 delayFactor = _delayedProtocolPerVaultParams[nft].length == 0 ? 0 : 1;
        _delayedProtocolPerVaultParamsTimestamp[nft] =
            block.timestamp +
            _internalParams.protocolGovernance.governanceDelay() *
            delayFactor;
    }

    /// @notice Commit Delayed Protocol Per Vault Params
    function _commitDelayedProtocolPerVaultParams(uint256 nft) internal {
        _requireProtocolAdmin();
        uint256 thisDelayedProtocolPerVaultParamsTimestamp = _delayedProtocolPerVaultParamsTimestamp[nft];
        require(thisDelayedProtocolPerVaultParamsTimestamp != 0, ExceptionsLibrary.NULL);
        require(block.timestamp >= thisDelayedProtocolPerVaultParamsTimestamp, ExceptionsLibrary.TIMESTAMP);
        _delayedProtocolPerVaultParams[nft] = _stagedDelayedProtocolPerVaultParams[nft];
        delete _stagedDelayedProtocolPerVaultParams[nft];
        delete _delayedProtocolPerVaultParamsTimestamp[nft];
    }

    /// @notice Set Delayed Protocol Params
    /// @param params New params
    function _stageDelayedProtocolParams(bytes memory params) internal {
        _requireProtocolAdmin();
        uint256 delayFactor = _delayedProtocolParams.length == 0 ? 0 : 1;
        _stagedDelayedProtocolParams = params;
        _delayedProtocolParamsTimestamp =
            block.timestamp +
            _internalParams.protocolGovernance.governanceDelay() *
            delayFactor;
    }

    /// @notice Commit Delayed Protocol Params
    function _commitDelayedProtocolParams() internal {
        _requireProtocolAdmin();
        require(_delayedProtocolParamsTimestamp != 0, ExceptionsLibrary.NULL);
        require(block.timestamp >= _delayedProtocolParamsTimestamp, ExceptionsLibrary.TIMESTAMP);
        _delayedProtocolParams = _stagedDelayedProtocolParams;
        delete _stagedDelayedProtocolParams;
        delete _delayedProtocolParamsTimestamp;
    }

    /// @notice Set immediate strategy params
    /// @dev Should require nft > 0
    /// @param nft Nft of the vault
    /// @param params New params
    function _setStrategyParams(uint256 nft, bytes memory params) internal {
        _requireAtLeastStrategy(nft);
        _strategyParams[nft] = params;
    }

    /// @notice Set immediate operator params
    /// @param params New params
    function _setOperatorParams(bytes memory params) internal {
        _requireAtLeastOperator();
        _operatorParams = params;
    }

    /// @notice Set immediate protocol params
    /// @param params New params
    function _setProtocolParams(bytes memory params) internal {
        _requireProtocolAdmin();
        _protocolParams = params;
    }

    // --------------------------  EVENTS  --------------------------

    /// @notice Emitted when InternalParams are staged for commit
    /// @param origin Origin of the transaction (tx.origin)
    /// @param sender Sender of the call (msg.sender)
    /// @param params New params that were staged for commit
    /// @param when When the params could be committed
    event StagedInternalParams(address indexed origin, address indexed sender, InternalParams params, uint256 when);

    /// @notice Emitted when InternalParams are staged for commit
    /// @param origin Origin of the transaction (tx.origin)
    /// @param sender Sender of the call (msg.sender)
    /// @param params New params that were staged for commit
    event CommitedInternalParams(address indexed origin, address indexed sender, InternalParams params);

    /// @notice Emitted when New Vault is deployed
    /// @param origin Origin of the transaction (tx.origin)
    /// @param sender Sender of the call (msg.sender)
    /// @param vaultTokens Vault tokens for this vault
    /// @param options Options for deploy. The details of the options structure are specified in subcontracts
    /// @param owner Owner of the VaultRegistry NFT for this vault
    /// @param vaultAddress Address of the new Vault
    /// @param vaultNft VaultRegistry NFT for the new Vault
    event DeployedVault(
        address indexed origin,
        address indexed sender,
        address[] vaultTokens,
        bytes options,
        address owner,
        address vaultAddress,
        uint256 vaultNft
    );
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@solmate/=lib/solmate/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200,
    "details": {
      "yul": true,
      "yulDetails": {
        "stackAllocation": true
      }
    }
  },
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"actualTokenAmounts","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"lpTokenMinted","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"reason","type":"string"}],"name":"DepositCallbackLog","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"origin","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address[]","name":"vaultTokens_","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"nft_","type":"uint256"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"treasury","type":"address"},{"indexed":false,"internalType":"uint256","name":"feeRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ManagementFeesCharged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"treasury","type":"address"},{"indexed":false,"internalType":"uint256","name":"feeRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PerformanceFeesCharged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"treasury","type":"address"},{"indexed":false,"internalType":"uint256","name":"feeRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ProtocolFeesCharged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"actualTokenAmounts","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"lpTokenBurned","type":"uint256"}],"name":"Withdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"reason","type":"string"}],"name":"WithdrawCallbackLog","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PERMIT_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"depositors","type":"address[]"}],"name":"addDepositorsToAllowlist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenAmounts","type":"uint256[]"},{"internalType":"uint256","name":"minLpTokens","type":"uint256"},{"internalType":"bytes","name":"vaultOptions","type":"bytes"}],"name":"deposit","outputs":[{"internalType":"uint256[]","name":"actualTokenAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositorsAllowlist","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nft_","type":"uint256"}],"name":"hasSubvault","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"helper","outputs":[{"internalType":"contract IERC20RootVaultHelper","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nft_","type":"uint256"},{"internalType":"address[]","name":"vaultTokens_","type":"address[]"},{"internalType":"address","name":"strategy_","type":"address"},{"internalType":"uint256[]","name":"subvaultNfts_","type":"uint256[]"},{"internalType":"contract IERC20RootVaultHelper","name":"helper_","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isVaultToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastFeeCharge","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastRebalanceFlagSet","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpPriceHighWaterMarkD18","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nft","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pullExistentials","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"depositors","type":"address[]"}],"name":"removeDepositorsFromAllowlist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setRebalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"subvaultAt","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"subvaultNfts","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nft_","type":"uint256"}],"name":"subvaultOneBasedIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"totalWithdrawnAmounts","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalWithdrawnAmountsTimestamp","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tvl","outputs":[{"internalType":"uint256[]","name":"minTokenAmounts","type":"uint256[]"},{"internalType":"uint256[]","name":"maxTokenAmounts","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vaultGovernance","outputs":[{"internalType":"contract IVaultGovernance","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vaultTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"lpTokenAmount","type":"uint256"},{"internalType":"uint256[]","name":"minTokenAmounts","type":"uint256[]"},{"internalType":"bytes[]","name":"vaultsOptions","type":"bytes[]"}],"name":"withdraw","outputs":[{"internalType":"uint256[]","name":"actualTokenAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.

Validator Index Block Amount
View All Withdrawals

Txn Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.