Overview
ETH Balance
0 ETH
Eth Value
$0.00| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x60808060 | 18119022 | 873 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
MultichainECDSAValidator
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 800 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import {UserOperation} from "./BaseAuthorizationModule.sol";
import {EcdsaOwnershipRegistryModule} from "./EcdsaOwnershipRegistryModule.sol";
import {UserOperationLib} from "@account-abstraction/contracts/interfaces/UserOperation.sol";
import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import {_packValidationData} from "@account-abstraction/contracts/core/Helpers.sol";
/**
* @title ECDSA Multichain Validator module for Biconomy Smart Accounts.
* @dev Biconomy’s Multichain Validator module enables use cases which
* require several actions to be authorized for several chains with just one
* signature required from user.
* - Leverages Merkle Trees to efficiently manage large datasets
* - Inherits from the ECDSA Ownership Registry Module
* - Compatible with Biconomy Modular Interface v 0.1
* - Does not introduce any additional security trade-offs compared to the
* vanilla ERC-4337 flow.
* @author Fil Makarov - <[email protected]>
*/
contract MultichainECDSAValidator is EcdsaOwnershipRegistryModule {
using UserOperationLib for UserOperation;
/**
* @dev Validates User Operation.
* leaf = validUntil + validAfter + userOpHash
* If the leaf is the part of the Tree with a root provided, userOp considered
* to be authorized by user
* @param userOp user operation to be validated
* @param userOpHash hash of the userOp provided by the EP
*/
function validateUserOp(
UserOperation calldata userOp,
bytes32 userOpHash
) external view virtual override returns (uint256) {
(bytes memory moduleSignature, ) = abi.decode(
userOp.signature,
(bytes, address)
);
address sender;
//read sender from userOp, which is first userOp member (saves gas)
assembly {
sender := calldataload(userOp)
}
if (moduleSignature.length == 65) {
//it's not a multichain signature
return
_verifySignature(
userOpHash,
moduleSignature,
address(uint160(sender))
)
? VALIDATION_SUCCESS
: SIG_VALIDATION_FAILED;
}
//otherwise it is a multichain signature
(
uint48 validUntil,
uint48 validAfter,
bytes32 merkleTreeRoot,
bytes32[] memory merkleProof,
bytes memory multichainSignature
) = abi.decode(
moduleSignature,
(uint48, uint48, bytes32, bytes32[], bytes)
);
//make a leaf out of userOpHash, validUntil and validAfter
bytes32 leaf = keccak256(
abi.encodePacked(validUntil, validAfter, userOpHash)
);
if (!MerkleProof.verify(merkleProof, merkleTreeRoot, leaf)) {
revert("Invalid UserOp");
}
return
_verifySignature(
merkleTreeRoot,
multichainSignature,
address(uint160(sender))
)
? _packValidationData(
false, //sigVerificationFailed = false
validUntil == 0 ? type(uint48).max : validUntil,
validAfter
)
: SIG_VALIDATION_FAILED;
}
/**
* Inherits isValideSignature method from EcdsaOwnershipRegistryModule
* isValidSignature is intended to work not with a multichain signature
* but with a regular ecdsa signature over a message hash
*/
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
/* solhint-disable no-inline-assembly */
/**
* returned data from validateUserOp.
* validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
* @param aggregator - address(0) - the account validated the signature by itself.
* address(1) - the account failed to validate the signature.
* otherwise - this is an address of a signature aggregator that must be used to validate the signature.
* @param validAfter - this UserOp is valid only after this timestamp.
* @param validaUntil - this UserOp is valid only up to this timestamp.
*/
struct ValidationData {
address aggregator;
uint48 validAfter;
uint48 validUntil;
}
//extract sigFailed, validAfter, validUntil.
// also convert zero validUntil to type(uint48).max
function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
address aggregator = address(uint160(validationData));
uint48 validUntil = uint48(validationData >> 160);
if (validUntil == 0) {
validUntil = type(uint48).max;
}
uint48 validAfter = uint48(validationData >> (48 + 160));
return ValidationData(aggregator, validAfter, validUntil);
}
// intersect account and paymaster ranges.
function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
ValidationData memory accountValidationData = _parseValidationData(validationData);
ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
address aggregator = accountValidationData.aggregator;
if (aggregator == address(0)) {
aggregator = pmValidationData.aggregator;
}
uint48 validAfter = accountValidationData.validAfter;
uint48 validUntil = accountValidationData.validUntil;
uint48 pmValidAfter = pmValidationData.validAfter;
uint48 pmValidUntil = pmValidationData.validUntil;
if (validAfter < pmValidAfter) validAfter = pmValidAfter;
if (validUntil > pmValidUntil) validUntil = pmValidUntil;
return ValidationData(aggregator, validAfter, validUntil);
}
/**
* helper to pack the return value for validateUserOp
* @param data - the ValidationData to pack
*/
function _packValidationData(ValidationData memory data) pure returns (uint256) {
return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
}
/**
* helper to pack the return value for validateUserOp, when not using an aggregator
* @param sigFailed - true for signature failure, false for success
* @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
* @param validAfter first timestamp this UserOperation is valid
*/
function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
}
/**
* keccak function over calldata.
* @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
*/
function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
assembly {
let mem := mload(0x40)
let len := data.length
calldatacopy(mem, data.offset, len)
ret := keccak256(mem, len)
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;
/* solhint-disable no-inline-assembly */
import {calldataKeccak} from "../core/Helpers.sol";
/**
* User Operation struct
* @param sender the sender account of this request.
* @param nonce unique value the sender uses to verify it is not a replay.
* @param initCode if set, the account contract will be created by this constructor/
* @param callData the method call to execute on this account.
* @param callGasLimit the gas limit passed to the callData method call.
* @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
* @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
* @param maxFeePerGas same as EIP-1559 gas parameter.
* @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
* @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
* @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
*/
struct UserOperation {
address sender;
uint256 nonce;
bytes initCode;
bytes callData;
uint256 callGasLimit;
uint256 verificationGasLimit;
uint256 preVerificationGas;
uint256 maxFeePerGas;
uint256 maxPriorityFeePerGas;
bytes paymasterAndData;
bytes signature;
}
/**
* Utility functions helpful when working with UserOperation structs.
*/
library UserOperationLib {
function getSender(UserOperation calldata userOp) internal pure returns (address) {
address data;
//read sender from userOp, which is first userOp member (saves 800 gas...)
assembly {data := calldataload(userOp)}
return address(uint160(data));
}
//relayer/block builder might submit the TX with higher priorityFee, but the user should not
// pay above what he signed for.
function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
unchecked {
uint256 maxFeePerGas = userOp.maxFeePerGas;
uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
if (maxFeePerGas == maxPriorityFeePerGas) {
//legacy mode (for networks that don't support basefee opcode)
return maxFeePerGas;
}
return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
}
}
function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
address sender = getSender(userOp);
uint256 nonce = userOp.nonce;
bytes32 hashInitCode = calldataKeccak(userOp.initCode);
bytes32 hashCallData = calldataKeccak(userOp.callData);
uint256 callGasLimit = userOp.callGasLimit;
uint256 verificationGasLimit = userOp.verificationGasLimit;
uint256 preVerificationGas = userOp.preVerificationGas;
uint256 maxFeePerGas = userOp.maxFeePerGas;
uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
return abi.encode(
sender, nonce,
hashInitCode, hashCallData,
callGasLimit, verificationGasLimit, preVerificationGas,
maxFeePerGas, maxPriorityFeePerGas,
hashPaymasterAndData
);
}
function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
return keccak256(pack(userOp));
}
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import {UserOperation} from "@account-abstraction/contracts/interfaces/UserOperation.sol";
// interface for modules to verify singatures signed over userOpHash
interface IAuthorizationModule {
function validateUserOp(
UserOperation calldata userOp,
bytes32 userOpHash
) external returns (uint256 validationData);
}// SPDX-License-Identifier: LGPL-3.0-only
pragma solidity 0.8.17;
contract ISignatureValidatorConstants {
// bytes4(keccak256("isValidSignature(bytes32,bytes)")
bytes4 internal constant EIP1271_MAGIC_VALUE = 0x1626ba7e;
}
abstract contract ISignatureValidator is ISignatureValidatorConstants {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param _dataHash Arbitrary length data signed on behalf of address(this)
* @param _signature Signature byte array associated with _data
*
* MUST return the bytes4 magic value 0x1626ba7e when function passes.
* MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
* MUST allow external calls
*/
function isValidSignature(
bytes32 _dataHash,
bytes memory _signature
) public view virtual returns (bytes4);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import {IAuthorizationModule, UserOperation} from "../interfaces/IAuthorizationModule.sol";
import {ISignatureValidator, ISignatureValidatorConstants} from "../interfaces/ISignatureValidator.sol";
contract AuthorizationModulesConstants {
uint256 internal constant VALIDATION_SUCCESS = 0;
uint256 internal constant SIG_VALIDATION_FAILED = 1;
}
abstract contract BaseAuthorizationModule is
IAuthorizationModule,
ISignatureValidator,
AuthorizationModulesConstants
{}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import {BaseAuthorizationModule, UserOperation} from "./BaseAuthorizationModule.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
/**
* @title ECDSA ownership Authorization module for Biconomy Smart Accounts.
* @dev Compatible with Biconomy Modular Interface v 0.1
* - It allows to validate user operations signed by EOA private key.
* - EIP-1271 compatible (ensures Smart Account can validate signed messages).
* - One owner per Smart Account.
* - Does not support outdated eth_sign flow for cheaper validations (see https://support.metamask.io/hc/en-us/articles/14764161421467-What-is-eth-sign-and-why-is-it-a-risk-)
* !!!!!!! Only EOA owners supported, no Smart Account Owners
* For Smart Contract Owners check SmartContractOwnership module instead
* @author Fil Makarov - <[email protected]>
*/
contract EcdsaOwnershipRegistryModule is BaseAuthorizationModule {
using ECDSA for bytes32;
string public constant NAME = "ECDSA Ownership Registry Module";
string public constant VERSION = "0.2.0";
mapping(address => address) internal _smartAccountOwners;
event OwnershipTransferred(
address indexed smartAccount,
address indexed oldOwner,
address indexed newOwner
);
error NoOwnerRegisteredForSmartAccount(address smartAccount);
error AlreadyInitedForSmartAccount(address smartAccount);
error WrongSignatureLength();
error NotEOA(address account);
error ZeroAddressNotAllowedAsOwner();
/**
* @dev Initializes the module for a Smart Account.
* Should be used at a time of first enabling the module for a Smart Account.
* @param eoaOwner The owner of the Smart Account. Should be EOA!
*/
function initForSmartAccount(address eoaOwner) external returns (address) {
if (_smartAccountOwners[msg.sender] != address(0))
revert AlreadyInitedForSmartAccount(msg.sender);
if (eoaOwner == address(0)) revert ZeroAddressNotAllowedAsOwner();
_smartAccountOwners[msg.sender] = eoaOwner;
return address(this);
}
/**
* @dev Sets/changes an for a Smart Account.
* Should be called by Smart Account itself.
* @param owner The owner of the Smart Account.
*/
function transferOwnership(address owner) external {
if (_isSmartContract(owner)) revert NotEOA(owner);
if (owner == address(0)) revert ZeroAddressNotAllowedAsOwner();
_transferOwnership(msg.sender, owner);
}
/**
* @dev Renounces ownership
* should be called by Smart Account.
*/
function renounceOwnership() external {
_transferOwnership(msg.sender, address(0));
}
/**
* @dev Returns the owner of the Smart Account. Reverts for Smart Accounts without owners.
* @param smartAccount Smart Account address.
* @return owner The owner of the Smart Account.
*/
function getOwner(address smartAccount) external view returns (address) {
address owner = _smartAccountOwners[smartAccount];
if (owner == address(0))
revert NoOwnerRegisteredForSmartAccount(smartAccount);
return owner;
}
/**
* @dev validates userOperation
* @param userOp User Operation to be validated.
* @param userOpHash Hash of the User Operation to be validated.
* @return sigValidationResult 0 if signature is valid, SIG_VALIDATION_FAILED otherwise.
*/
function validateUserOp(
UserOperation calldata userOp,
bytes32 userOpHash
) external view virtual returns (uint256) {
(bytes memory cleanEcdsaSignature, ) = abi.decode(
userOp.signature,
(bytes, address)
);
if (_verifySignature(userOpHash, cleanEcdsaSignature, userOp.sender)) {
return VALIDATION_SUCCESS;
}
return SIG_VALIDATION_FAILED;
}
/**
* @dev Validates a signature for a message.
* To be called from a Smart Account.
* @param dataHash Exact hash of the data that was signed.
* @param moduleSignature Signature to be validated.
* @return EIP1271_MAGIC_VALUE if signature is valid, 0xffffffff otherwise.
*/
function isValidSignature(
bytes32 dataHash,
bytes memory moduleSignature
) public view virtual override returns (bytes4) {
return
isValidSignatureForAddress(dataHash, moduleSignature, msg.sender);
}
/**
* @dev Validates a signature for a message signed by address.
* @dev Also try dataHash.toEthSignedMessageHash()
* @param dataHash hash of the data
* @param moduleSignature Signature to be validated.
* @param smartAccount expected signer Smart Account address.
* @return EIP1271_MAGIC_VALUE if signature is valid, 0xffffffff otherwise.
*/
function isValidSignatureForAddress(
bytes32 dataHash,
bytes memory moduleSignature,
address smartAccount
) public view virtual returns (bytes4) {
if (_verifySignature(dataHash, moduleSignature, smartAccount)) {
return EIP1271_MAGIC_VALUE;
}
return bytes4(0xffffffff);
}
/**
* @dev Transfers ownership for smartAccount and emits an event
* @param newOwner Smart Account address.
*/
function _transferOwnership(
address smartAccount,
address newOwner
) internal {
address _oldOwner = _smartAccountOwners[smartAccount];
_smartAccountOwners[smartAccount] = newOwner;
emit OwnershipTransferred(smartAccount, _oldOwner, newOwner);
}
/**
* @dev Validates a signature for a message.
* @dev Check if signature was made over dataHash.toEthSignedMessageHash() or just dataHash
* The former is for personal_sign, the latter for the typed_data sign
* Only EOA owners supported, no Smart Account Owners
* For Smart Contract Owners check SmartContractOwnership Module instead
* @param dataHash Hash of the data to be validated.
* @param signature Signature to be validated.
* @param smartAccount expected signer Smart Account address.
* @return true if signature is valid, false otherwise.
*/
function _verifySignature(
bytes32 dataHash,
bytes memory signature,
address smartAccount
) internal view returns (bool) {
address expectedSigner = _smartAccountOwners[smartAccount];
if (expectedSigner == address(0))
revert NoOwnerRegisteredForSmartAccount(smartAccount);
if (signature.length < 65) revert WrongSignatureLength();
address recovered = (dataHash.toEthSignedMessageHash()).recover(
signature
);
if (expectedSigner == recovered) {
return true;
}
recovered = dataHash.recover(signature);
if (expectedSigner == recovered) {
return true;
}
return false;
}
/**
* @dev Checks if the address provided is a smart contract.
* @param account Address to be checked.
*/
function _isSmartContract(address account) internal view returns (bool) {
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
}{
"optimizer": {
"enabled": true,
"runs": 800
},
"viaIR": true,
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"metadata": {
"useLiteralContent": true
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"AlreadyInitedForSmartAccount","type":"error"},{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"NoOwnerRegisteredForSmartAccount","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"NotEOA","type":"error"},{"inputs":[],"name":"WrongSignatureLength","type":"error"},{"inputs":[],"name":"ZeroAddressNotAllowedAsOwner","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"smartAccount","type":"address"},{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"NAME","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"eoaOwner","type":"address"}],"name":"initForSmartAccount","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"dataHash","type":"bytes32"},{"internalType":"bytes","name":"moduleSignature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"dataHash","type":"bytes32"},{"internalType":"bytes","name":"moduleSignature","type":"bytes"},{"internalType":"address","name":"smartAccount","type":"address"}],"name":"isValidSignatureForAddress","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]Contract Creation Code
6080806040523461001657610b9b908161001c8239f35b600080fdfe6040608081526004908136101561001557600080fd5b6000803560e01c80631626ba7e1461040a5780632ede3bc014610388578063715018a614610318578063a3f4df7e146102c3578063f2fde38b1461020d578063f44c339d14610185578063fa5441611461012d578063ffa1ad74146100d45763fff35b721461008357600080fd5b346100cd576003199082823601126100cd5783359167ffffffffffffffff83116100d0576101609083360301126100cd57506020926100c691602435910161085d565b9051908152f35b80fd5b5080fd5b5090346100d057816003193601126100d0578051610129916100f58261044a565b600582527f302e322e300000000000000000000000000000000000000000000000000000006020830152519182918261053f565b0390f35b5082346100d05760203660031901126100d0576001600160a01b038381610152610506565b16938481528060205220541691821561016f576020838551908152f35b8351633d3fff5360e21b81529182015260249150fd5b5091346102095760603660031901126102095760243567ffffffffffffffff8111610205576101b790369083016104ba565b90604435936001600160a01b03851685036100cd5750926101db916020943561056b565b90517fffffffff000000000000000000000000000000000000000000000000000000009091168152f35b8380fd5b8280fd5b5091903461020957602036600319011261020957610229610506565b803b6102a4576001600160a01b0380911692831561029657503384528360205281842054169083208273ffffffffffffffffffffffffffffffffffffffff19825416179055337fc8894f26f396ce8c004245c8b7cd1b92103a6e4302fcbab883987149ac01b7ec8480a480f35b82516307e179e960e31b8152fd5b826001600160a01b0360249351926377817ac360e01b84521690820152fd5b5090346100d057816003193601126100d0578051610129916102e48261044a565b601f82527f4543445341204f776e657273686970205265676973747279204d6f64756c65006020830152519182918261053f565b50809134610385578160031936011261038557338252816020526001600160a01b03818320541690822073ffffffffffffffffffffffffffffffffffffffff198154169055337fc8894f26f396ce8c004245c8b7cd1b92103a6e4302fcbab883987149ac01b7ec8380a480f35b50fd5b509134610209576020366003190112610209576103a3610506565b338452836020526001600160a01b03908184862054166103f45716908115610296575081602093338152808552209073ffffffffffffffffffffffffffffffffffffffff1982541617905551308152f35b8351632c4dfb7d60e21b81523381850152602490fd5b50346100cd57816003193601126100cd576024359067ffffffffffffffff82116100cd57506020926104426101db92369083016104ba565b33913561056b565b6040810190811067ffffffffffffffff82111761046657604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff82111761046657604052565b67ffffffffffffffff811161046657601f01601f191660200190565b81601f82011215610501578035906104d18261049e565b926104df604051948561047c565b8284526020838301011161050157816000926020809301838601378301015290565b600080fd5b600435906001600160a01b038216820361050157565b60005b83811061052f5750506000910152565b818101518382015260200161051f565b6040916020825261055f815180928160208601526020868601910161051c565b601f01601f1916010190565b9061057692916105a9565b61059e577fffffffff0000000000000000000000000000000000000000000000000000000090565b630b135d3f60e11b90565b916001600160a01b0380911691600093838552846020528260408620541693841561065757506041825110610645577f19457468657265756d205369676e6564204d6573736167653a0a333200000000855280601c528261061861061084603c8920610789565b91909161066f565b16841461063b5761062c9161061091610789565b16146106355790565b50600190565b5050505050600190565b604051632bb1a9c560e11b8152600490fd5b60249060405190633d3fff5360e21b82526004820152fd5b600581101561077357806106805750565b600181036106cd5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606490fd5b6002810361071a5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606490fd5b60031461072357565b60405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608490fd5b634e487b7160e01b600052602160045260246000fd5b9060418151146000146107b7576107b3916020820151906060604084015193015160001a906107c1565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831161083e5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156108315781516001600160a01b03811615610635579190565b50604051903d90823e3d90fd5b50505050600090600390565b519065ffffffffffff8216820361050157565b919091610140810135601e19823603018112156105015781019182359267ffffffffffffffff9081851161050157602092838201958036038713610501578201604096878483031261050157359084821161050157879186806108c49301918601016104ba565b920135946001600160a01b0395868116036105015735966041835114610b43578251830160a0848783019203126105015761090086850161084a565b9061090c89860161084a565b9060608601519160808701518881116105015787019782603f8a011215610501578989015197818911610466578a998d9960059a818c1b9161095482519e8f9085019061047c565b8d528d8d019183010191868311610501578f8e9101915b838310610b33575050505060a081015190828211610501570183603f8201121561050157808b01518d9461099e8261049e565b956109ab8151978861047c565b8287528284010111610501576109c6918e8d8701910161051c565b8b51908a8201927fffffffffffff000000000000000000000000000000000000000000000000000090818860d01b16855260d01b1696876026840152602c830152602c8252606082019082821090821117610466578c52519020986000995b88518b1015610a84578a881b89018a0151908c600083831015610a7757505060005289528a6000205b996000198114610a615760010199610a25565b634e487b7160e01b600052601160045260246000fd5b91909282528b5220610a4e565b91965094999a93985081965096919603610af05750610aa8949596975016916105a9565b15610ae95779ffffffffffff00000000000000000000000000000000000000009065ffffffffffff90818116610ae257505b60a01b161790565b9050610ada565b5050600190565b60649089519062461bcd60e51b82526004820152600e60248201527f496e76616c696420557365724f700000000000000000000000000000000000006044820152fd5b82518152918101918e910161096b565b94925095909250610b56945016916105a9565b15610b6057600090565b60019056fea26469706673582212202a3242d73a2c92fd929c32924b5f964b80434c765985e101142ea4635452e6a664736f6c63430008110033
Deployed Bytecode
0x6040608081526004908136101561001557600080fd5b6000803560e01c80631626ba7e1461040a5780632ede3bc014610388578063715018a614610318578063a3f4df7e146102c3578063f2fde38b1461020d578063f44c339d14610185578063fa5441611461012d578063ffa1ad74146100d45763fff35b721461008357600080fd5b346100cd576003199082823601126100cd5783359167ffffffffffffffff83116100d0576101609083360301126100cd57506020926100c691602435910161085d565b9051908152f35b80fd5b5080fd5b5090346100d057816003193601126100d0578051610129916100f58261044a565b600582527f302e322e300000000000000000000000000000000000000000000000000000006020830152519182918261053f565b0390f35b5082346100d05760203660031901126100d0576001600160a01b038381610152610506565b16938481528060205220541691821561016f576020838551908152f35b8351633d3fff5360e21b81529182015260249150fd5b5091346102095760603660031901126102095760243567ffffffffffffffff8111610205576101b790369083016104ba565b90604435936001600160a01b03851685036100cd5750926101db916020943561056b565b90517fffffffff000000000000000000000000000000000000000000000000000000009091168152f35b8380fd5b8280fd5b5091903461020957602036600319011261020957610229610506565b803b6102a4576001600160a01b0380911692831561029657503384528360205281842054169083208273ffffffffffffffffffffffffffffffffffffffff19825416179055337fc8894f26f396ce8c004245c8b7cd1b92103a6e4302fcbab883987149ac01b7ec8480a480f35b82516307e179e960e31b8152fd5b826001600160a01b0360249351926377817ac360e01b84521690820152fd5b5090346100d057816003193601126100d0578051610129916102e48261044a565b601f82527f4543445341204f776e657273686970205265676973747279204d6f64756c65006020830152519182918261053f565b50809134610385578160031936011261038557338252816020526001600160a01b03818320541690822073ffffffffffffffffffffffffffffffffffffffff198154169055337fc8894f26f396ce8c004245c8b7cd1b92103a6e4302fcbab883987149ac01b7ec8380a480f35b50fd5b509134610209576020366003190112610209576103a3610506565b338452836020526001600160a01b03908184862054166103f45716908115610296575081602093338152808552209073ffffffffffffffffffffffffffffffffffffffff1982541617905551308152f35b8351632c4dfb7d60e21b81523381850152602490fd5b50346100cd57816003193601126100cd576024359067ffffffffffffffff82116100cd57506020926104426101db92369083016104ba565b33913561056b565b6040810190811067ffffffffffffffff82111761046657604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff82111761046657604052565b67ffffffffffffffff811161046657601f01601f191660200190565b81601f82011215610501578035906104d18261049e565b926104df604051948561047c565b8284526020838301011161050157816000926020809301838601378301015290565b600080fd5b600435906001600160a01b038216820361050157565b60005b83811061052f5750506000910152565b818101518382015260200161051f565b6040916020825261055f815180928160208601526020868601910161051c565b601f01601f1916010190565b9061057692916105a9565b61059e577fffffffff0000000000000000000000000000000000000000000000000000000090565b630b135d3f60e11b90565b916001600160a01b0380911691600093838552846020528260408620541693841561065757506041825110610645577f19457468657265756d205369676e6564204d6573736167653a0a333200000000855280601c528261061861061084603c8920610789565b91909161066f565b16841461063b5761062c9161061091610789565b16146106355790565b50600190565b5050505050600190565b604051632bb1a9c560e11b8152600490fd5b60249060405190633d3fff5360e21b82526004820152fd5b600581101561077357806106805750565b600181036106cd5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606490fd5b6002810361071a5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606490fd5b60031461072357565b60405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608490fd5b634e487b7160e01b600052602160045260246000fd5b9060418151146000146107b7576107b3916020820151906060604084015193015160001a906107c1565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831161083e5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156108315781516001600160a01b03811615610635579190565b50604051903d90823e3d90fd5b50505050600090600390565b519065ffffffffffff8216820361050157565b919091610140810135601e19823603018112156105015781019182359267ffffffffffffffff9081851161050157602092838201958036038713610501578201604096878483031261050157359084821161050157879186806108c49301918601016104ba565b920135946001600160a01b0395868116036105015735966041835114610b43578251830160a0848783019203126105015761090086850161084a565b9061090c89860161084a565b9060608601519160808701518881116105015787019782603f8a011215610501578989015197818911610466578a998d9960059a818c1b9161095482519e8f9085019061047c565b8d528d8d019183010191868311610501578f8e9101915b838310610b33575050505060a081015190828211610501570183603f8201121561050157808b01518d9461099e8261049e565b956109ab8151978861047c565b8287528284010111610501576109c6918e8d8701910161051c565b8b51908a8201927fffffffffffff000000000000000000000000000000000000000000000000000090818860d01b16855260d01b1696876026840152602c830152602c8252606082019082821090821117610466578c52519020986000995b88518b1015610a84578a881b89018a0151908c600083831015610a7757505060005289528a6000205b996000198114610a615760010199610a25565b634e487b7160e01b600052601160045260246000fd5b91909282528b5220610a4e565b91965094999a93985081965096919603610af05750610aa8949596975016916105a9565b15610ae95779ffffffffffff00000000000000000000000000000000000000009065ffffffffffff90818116610ae257505b60a01b161790565b9050610ada565b5050600190565b60649089519062461bcd60e51b82526004820152600e60248201527f496e76616c696420557365724f700000000000000000000000000000000000006044820152fd5b82518152918101918e910161096b565b94925095909250610b56945016916105a9565b15610b6057600090565b60019056fea26469706673582212202a3242d73a2c92fd929c32924b5f964b80434c765985e101142ea4635452e6a664736f6c63430008110033
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.