ETH Price: $3,403.84 (+5.69%)

Contract

0x0000000000300dd8B0230efcfEf136eCdF6ABCDE
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

More Info

Private Name Tags

TokenTracker

DegenX (DGNX) ($0.0012)

Multichain Info

Transaction Hash
Method
Block
From
To
Approve236763562025-10-28 13:55:5910 days ago1761659759IN
DegenX: DGNX Token
0 ETH0.000033160.64368265
Approve235237532025-10-07 5:20:3532 days ago1759814435IN
DegenX: DGNX Token
0 ETH0.000009010.17506431
Approve235031992025-10-04 8:24:2335 days ago1759566263IN
DegenX: DGNX Token
0 ETH0.000005560.10806038
Transfer235031722025-10-04 8:18:5935 days ago1759565939IN
DegenX: DGNX Token
0 ETH0.000015950.25264575
Approve234550842025-09-27 14:58:2341 days ago1758985103IN
DegenX: DGNX Token
0 ETH0.000029660.57641811
Transfer234550312025-09-27 14:47:4741 days ago1758984467IN
DegenX: DGNX Token
0 ETH0.00003120.49424701
Approve234352172025-09-24 20:15:3544 days ago1758744935IN
DegenX: DGNX Token
0 ETH0.000011540.22394907
Approve234341572025-09-24 16:42:1144 days ago1758732131IN
DegenX: DGNX Token
0 ETH0.000049480.96031263
Approve234143802025-09-21 22:24:2347 days ago1758493463IN
DegenX: DGNX Token
0 ETH0.000051090.99154681
Approve233973132025-09-19 13:05:5949 days ago1758287159IN
DegenX: DGNX Token
0 ETH0.000023020.44710851
Approve233972712025-09-19 12:57:2349 days ago1758286643IN
DegenX: DGNX Token
0 ETH0.000023310.45301495
Transfer233835892025-09-17 15:06:4751 days ago1758121607IN
DegenX: DGNX Token
0 ETH0.000061540.97478654
Transfer233127392025-09-07 17:34:2361 days ago1757266463IN
DegenX: DGNX Token
0 ETH0.000013040.20666941
Transfer232882262025-09-04 7:21:5965 days ago1756970519IN
DegenX: DGNX Token
0 ETH0.000024630.39033206
Transfer232881702025-09-04 7:10:4765 days ago1756969847IN
DegenX: DGNX Token
0 ETH0.000020210.32019521
Transfer232329742025-08-27 14:12:4772 days ago1756303967IN
DegenX: DGNX Token
0 ETH0.000067911.47543826
Transfer232329282025-08-27 14:03:2372 days ago1756303403IN
DegenX: DGNX Token
0 ETH0.000078671.24642121
Approve232032532025-08-23 10:41:1177 days ago1755945671IN
DegenX: DGNX Token
0 ETH0.000010740.31206819
Transfer231959842025-08-22 10:21:2378 days ago1755858083IN
DegenX: DGNX Token
0 ETH0.000158382.50882201
Approve230579122025-08-03 3:41:1197 days ago1754192471IN
DegenX: DGNX Token
0 ETH0.000017110.33205918
Approve230471082025-08-01 15:24:3598 days ago1754061875IN
DegenX: DGNX Token
0 ETH0.00025937.5311778
Approve230470292025-08-01 15:08:4798 days ago1754060927IN
DegenX: DGNX Token
0 ETH0.000027220.79362003
Approve230469782025-08-01 14:58:3598 days ago1754060315IN
DegenX: DGNX Token
0 ETH0.000042540.82946335
Approve229967582025-07-25 14:29:35105 days ago1753453775IN
DegenX: DGNX Token
0 ETH0.000042250.82
Approve229901802025-07-24 16:23:11106 days ago1753374191IN
DegenX: DGNX Token
0 ETH0.000054031.04866266
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
DegenX

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 99999 runs

Other Settings:
default evmVersion
File 1 of 10 : DegenX.sol
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.19;

import { Diamond } from "./Diamond.sol";

/// @title DegenX Ecosystem Diamond
/// @author Daniel <[email protected]>
/// @custom:version 1.0.0
contract DegenX is Diamond {
    constructor(address _owner, address _diamondCutFacet) payable Diamond(_owner, _diamondCutFacet) {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

/******************************************************************************\
* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen)
* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535
*
* Implementation of a diamond.
/******************************************************************************/

import { LibAccessControlEnumerable } from "./libraries/LibAccessControlEnumerable.sol";
import { Constants } from "./helpers/Constants.sol";
import { LibDiamond } from "./libraries/LibDiamond.sol";
import { IDiamondCut } from "./interfaces/IDiamondCut.sol";

/// @custom:version 1.0.0
contract Diamond {
    constructor(address _owner, address _diamondCutFacet) payable {
        LibDiamond.setContractOwner(_owner);

        // Add the diamondCut external function from the diamondCutFacet
        IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
        bytes4[] memory functionSelectors = new bytes4[](1);
        functionSelectors[0] = IDiamondCut.diamondCut.selector;
        cut[0] = IDiamondCut.FacetCut({
            facetAddress: _diamondCutFacet,
            action: IDiamondCut.FacetCutAction.Add,
            functionSelectors: functionSelectors
        });

        LibDiamond.diamondCut(cut, address(0), "");
    }

    // Find facet for function that is called and execute the
    // function if a facet is found and return any value.
    fallback() external payable {
        LibDiamond.DiamondStorage storage ds;
        bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
        // get diamond storage
        assembly {
            ds.slot := position
        }
        // get facet from function selector
        address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
        require(facet != address(0), "Diamond: Function does not exist");
        // Execute external function from facet using delegatecall and return any value.
        assembly {
            // copy function selector and any arguments
            calldatacopy(0, 0, calldatasize())
            // execute function call using the facet
            let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
            // get any return value
            returndatacopy(0, 0, returndatasize())
            // return any return value or error back to the caller
            switch result
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    receive() external payable {}
}

File 7 of 10 : Constants.sol
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;

library Constants {
    /*-------------------------------- Role --------------------------------*/
    // 0x0000000000000000000000000000000000000000000000000000000000000000
    bytes32 constant DEFAULT_ADMIN_ROLE = 0x00;
    // 0xa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775
    bytes32 constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
    // 0xfc425f2263d0df187444b70e47283d622c70181c5baebb1306a01edba1ce184c
    bytes32 constant DEPLOYER_ROLE = keccak256("DEPLOYER_ROLE");
    // 0x6c0757dc3e6b28b2580c03fd9e96c274acf4f99d91fbec9b418fa1d70604ff1c
    bytes32 constant FEE_MANAGER_ROLE = keccak256("FEE_MANAGER_ROLE");
    // 0x9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6
    bytes32 constant MINTER_ROLE = keccak256("MINTER_ROLE");
    // 0x3c11d16cbaffd01df69ce1c404f6340ee057498f5f00246190ea54220576a848
    bytes32 constant BURNER_ROLE = keccak256("BURNER_ROLE");
    // 0x63eb04268b235ac1afacf3bcf4b19c5c175d0417a1555fb3ff79ae190f71ee7c
    bytes32 constant FEE_STORE_MANAGER_ROLE = keccak256("FEE_STORE_MANAGER_ROLE");
    // 0x77f52ccf2f32e71a0cff8f14ad8c8303b7d2e4c7609b8fba963114f4db2af767
    bytes32 constant FEE_DISTRIBUTOR_PUSH_ROLE = keccak256("FEE_DISTRIBUTOR_PUSH_ROLE");
    // 0xe85d5f1f8338cb18f500856d1568d0f3b0d0971f25b3ccd134475e991354edbf
    bytes32 constant FEE_DISTRIBUTOR_MANAGER = keccak256("FEE_DISTRIBUTOR_MANAGER");
    /*----------------------------------------------------------------------*/

    /*------------------------------- Fee ID -------------------------------*/
    // 0xacfc432e98ad100d9f8c385f3782bc88a17e1de7e53f69678cbcc41e8ffe72b0
    bytes32 constant ERC20_MARKETING_FEE = keccak256("ERC20_MARKETING_FEE");
    // 0x6b78196f16f828b24a5a6584d4a1bcc5ce2f3154ba57839db273e6a4ebbe92c2
    bytes32 constant ERC20_REWARD_FEE = keccak256("ERC20_REWARD_FEE");
    // 0x6e3678bee6f77c8a6179922c9a518b08407e6d9d2593ac683a87c979c8b31a12
    bytes32 constant ERC20_PLATFORM_FEE = keccak256("ERC20_PLATFORM_FEE");
    // 0x6e2178bb28988b4c92cd3092e9e342e7639bfda2f68a02ac478cb084759607cf
    bytes32 constant ERC20_DEVELOPER_FEE = keccak256("ERC20_DEVELOPER_FEE");
    /*----------------------------------------------------------------------*/

    /*--------------------------- Relayer Actions --------------------------*/
    // 0xf145583e6e33d9da99af75b579493b11db4229a339336b82c748312f152b29a9
    bytes32 constant RELAYER_ACTION_DEPLOY_FEES = keccak256("RELAYER_ACTION_DEPLOY_FEES");
    // 0xf375f410a0dc135af0d9a16e273eac999064981d8813a68af762e93567a43aac
    bytes32 constant RELAYER_ACTION_DEPLOY_FEES_CONFIRM = keccak256("RELAYER_ACTION_DEPLOY_FEES_CONFIRM");
    // 0x9d62257b25ea052fe7cd5123fd6b791268b8673b073aae5de4a823c4dc7d7607
    bytes32 constant RELAYER_ACTION_SEND_FEES = keccak256("RELAYER_ACTION_SEND_FEES");
    /*----------------------------------------------------------------------*/
}

// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;

/******************************************************************************\
* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen)
* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535
/******************************************************************************/

interface IDiamondCut {
    enum FacetCutAction {
        Add,
        Replace,
        Remove
    }
    // Add=0, Replace=1, Remove=2

    struct FacetCut {
        address facetAddress;
        FacetCutAction action;
        bytes4[] functionSelectors;
    }

    /// @notice Add/replace/remove any number of functions and optionally execute
    ///         a function with delegatecall
    /// @param _diamondCut Contains the facet addresses and function selectors
    /// @param _init The address of the contract or facet to execute _calldata
    /// @param _calldata A function call, including function selector and arguments
    ///                  _calldata is executed with delegatecall on _init
    function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external;

}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

library LibAccessControlEnumerable {
    using EnumerableSet for EnumerableSet.AddressSet;

    bytes32 constant ACCESS_CONTROL_STORAGE_POSITION = keccak256("degenx.access.control.storage");

    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    struct AccessControlStorage {
        mapping(bytes32 => RoleData) roles;
        mapping(bytes32 => EnumerableSet.AddressSet) roleMembers;
        mapping(bytes4 => bool) supportedInterfaces;
    }

    function accessControlStorage() internal pure returns (AccessControlStorage storage acs) {
        bytes32 position = ACCESS_CONTROL_STORAGE_POSITION;
        assembly {
            acs.slot := position
        }
    }

    function checkRole(bytes32 role) internal view {
        checkRole(role, msg.sender);
    }

    function checkRole(bytes32 role, address account) internal view {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    function hasRole(bytes32 role, address account) internal view returns (bool) {
        AccessControlStorage storage acs = accessControlStorage();
        return acs.roles[role].members[account];
    }

    function grantRole(bytes32 role, address account) internal {
        AccessControlStorage storage acs = accessControlStorage();
        if (!hasRole(role, account)) {
            acs.roles[role].members[account] = true;
            emit RoleGranted(role, account, msg.sender);
            acs.roleMembers[role].add(account);
        }
    }

    function revokeRole(bytes32 role, address account) internal {
        AccessControlStorage storage acs = accessControlStorage();
        if (hasRole(role, account)) {
            acs.roles[role].members[account] = false;
            emit RoleRevoked(role, account, msg.sender);
            acs.roleMembers[role].remove(account);
        }
    }

    function setRoleAdmin(bytes32 role, bytes32 adminRole) internal {
        AccessControlStorage storage acs = accessControlStorage();
        bytes32 previousAdminRole = acs.roles[role].adminRole;
        acs.roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/******************************************************************************\
* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen)
* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535
/******************************************************************************/
import { IDiamondCut } from "../interfaces/IDiamondCut.sol";

// Remember to add the loupe functions from DiamondLoupeFacet to the diamond.
// The loupe functions are required by the EIP2535 Diamonds standard

error InitializationFunctionReverted(address _initializationContractAddress, bytes _calldata);

library LibDiamond {
    bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");

    struct FacetAddressAndPosition {
        address facetAddress;
        uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
    }

    struct FacetFunctionSelectors {
        bytes4[] functionSelectors;
        uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
    }

    struct DiamondStorage {
        // maps function selector to the facet address and
        // the position of the selector in the facetFunctionSelectors.selectors array
        mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
        // maps facet addresses to function selectors
        mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
        // facet addresses
        address[] facetAddresses;
        // Used to query if a contract implements an interface.
        // Used to implement ERC-165.
        mapping(bytes4 => bool) supportedInterfaces;
        // owner of the contract
        address contractOwner;
    }

    function diamondStorage() internal pure returns (DiamondStorage storage ds) {
        bytes32 position = DIAMOND_STORAGE_POSITION;
        assembly {
            ds.slot := position
        }
    }

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    function setContractOwner(address _newOwner) internal {
        DiamondStorage storage ds = diamondStorage();
        address previousOwner = ds.contractOwner;
        ds.contractOwner = _newOwner;
        emit OwnershipTransferred(previousOwner, _newOwner);
    }

    function contractOwner() internal view returns (address contractOwner_) {
        contractOwner_ = diamondStorage().contractOwner;
    }

    function enforceIsContractOwner() internal view {
        require(msg.sender == diamondStorage().contractOwner, "LibDiamond: Must be contract owner");
    }

    event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);

    // Internal function version of diamondCut
    function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal {
        for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) {
            IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
            if (action == IDiamondCut.FacetCutAction.Add) {
                addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Replace) {
                replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Remove) {
                removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else {
                revert("LibDiamondCut: Incorrect FacetCutAction");
            }
        }
        emit DiamondCut(_diamondCut, _init, _calldata);
        initializeDiamondCut(_init, _calldata);
    }

    function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");
        DiamondStorage storage ds = diamondStorage();
        require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)");
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists");
            addFunction(ds, selector, selectorPosition, _facetAddress);
            selectorPosition++;
        }
    }

    function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");
        DiamondStorage storage ds = diamondStorage();
        require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)");
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            require(oldFacetAddress != _facetAddress, "LibDiamondCut: Can't replace function with same function");
            removeFunction(ds, oldFacetAddress, selector);
            addFunction(ds, selector, selectorPosition, _facetAddress);
            selectorPosition++;
        }
    }

    function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");
        DiamondStorage storage ds = diamondStorage();
        // if function does not exist then do nothing and return
        require(_facetAddress == address(0), "LibDiamondCut: Remove facet address must be address(0)");
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            removeFunction(ds, oldFacetAddress, selector);
        }
    }

    function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
        enforceHasContractCode(_facetAddress, "LibDiamondCut: New facet has no code");
        ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
        ds.facetAddresses.push(_facetAddress);
    }

    function addFunction(DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress) internal {
        ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
        ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
    }

    function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal {
        require(_facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist");
        // an immutable function is a function defined directly in a diamond
        require(_facetAddress != address(this), "LibDiamondCut: Can't remove immutable function");
        // replace selector with last selector, then delete last selector
        uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
        uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
        // if not the same then replace _selector with lastSelector
        if (selectorPosition != lastSelectorPosition) {
            bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
            ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
            ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
        }
        // delete the last selector
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
        delete ds.selectorToFacetAndPosition[_selector];

        // if no more selectors for facet address then delete the facet address
        if (lastSelectorPosition == 0) {
            // replace facet address with last facet address and delete last facet address
            uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
            uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
            if (facetAddressPosition != lastFacetAddressPosition) {
                address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
            }
            ds.facetAddresses.pop();
            delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
        }
    }

    function initializeDiamondCut(address _init, bytes memory _calldata) internal {
        if (_init == address(0)) {
            return;
        }
        enforceHasContractCode(_init, "LibDiamondCut: _init address has no code");
        (bool success, bytes memory error) = _init.delegatecall(_calldata);
        if (!success) {
            if (error.length > 0) {
                // bubble up error
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(error)
                    revert(add(32, error), returndata_size)
                }
            } else {
                revert InitializationFunctionReverted(_init, _calldata);
            }
        }
    }

    function enforceHasContractCode(address _contract, string memory _errorMessage) internal view {
        uint256 contractSize;
        assembly {
            contractSize := extcodesize(_contract)
        }
        require(contractSize > 0, _errorMessage);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 99999
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_diamondCutFacet","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"_initializationContractAddress","type":"address"},{"internalType":"bytes","name":"_calldata","type":"bytes"}],"name":"InitializationFunctionReverted","type":"error"},{"stateMutability":"payable","type":"fallback"},{"stateMutability":"payable","type":"receive"}]

60806040526040516113f93803806113f983398101604081905261002291610f65565b818161002d8261013a565b604080516001808252818301909252600091816020015b604080516060808201835260008083526020830152918101919091528152602001906001900390816100445750506040805160018082528183019092529192506000919060208083019080368337019050509050631f931c1c60e01b816000815181106100b3576100b3610f98565b6001600160e01b031990921660209283029190910182015260408051606081019091526001600160a01b038516815290810160008152602001828152508260008151811061010357610103610f98565b602002602001018190525061012f826000604051806020016040528060008152506101bd60201b60201c565b505050505050611202565b7fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c132080546001600160a01b031981166001600160a01b0384811691821790935560405160008051602061134d833981519152939092169182907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a3505050565b60005b835181101561039a5760008482815181106101dd576101dd610f98565b6020026020010151602001519050600060028111156101fe576101fe610fae565b81600281111561021057610210610fae565b036102645761025f85838151811061022a5761022a610f98565b60200260200101516000015186848151811061024857610248610f98565b6020026020010151604001516103e560201b60201c565b610387565b600181600281111561027857610278610fae565b036102c75761025f85838151811061029257610292610f98565b6020026020010151600001518684815181106102b0576102b0610f98565b60200260200101516040015161065d60201b60201c565b60028160028111156102db576102db610fae565b0361032a5761025f8583815181106102f5576102f5610f98565b60200260200101516000015186848151811061031357610313610f98565b6020026020010151604001516108de60201b60201c565b60405162461bcd60e51b815260206004820152602760248201527f4c69624469616d6f6e644375743a20496e636f727265637420466163657443756044820152663a20b1ba34b7b760c91b60648201526084015b60405180910390fd5b508061039281610fda565b9150506101c0565b507f8faa70878671ccd212d20771b795c50af8fd3ff6cf27f4bde57e5d4de0aeb6738383836040516103ce93929190611043565b60405180910390a16103e08282610a35565b505050565b60008151116104385760405162461bcd60e51b815260206004820152602b60248201526000805160206113d983398151915260448201526a1858d95d081d1bc818dd5d60aa1b606482015260840161037e565b60008051602061134d8339815191526001600160a01b0383166104a05760405162461bcd60e51b815260206004820152602c602482015260008051602061139583398151915260448201526b65206164647265737328302960a01b606482015260840161037e565b6001600160a01b0383166000908152600182016020526040812054906001600160601b03821690036104d6576104d68285610afb565b60005b83518110156106565760008482815181106104f6576104f6610f98565b6020908102919091018101516001600160e01b031981166000908152918690526040909120549091506001600160a01b0316801561059c5760405162461bcd60e51b815260206004820152603560248201527f4c69624469616d6f6e644375743a2043616e2774206164642066756e6374696f60448201527f6e207468617420616c7265616479206578697374730000000000000000000000606482015260840161037e565b6001600160e01b0319821660008181526020878152604080832080546001600160a01b03908116600160a01b6001600160601b038c16021782558c168085526001808c0185529285208054938401815585528385206008840401805463ffffffff60079095166004026101000a948502191660e08a901c94909402939093179092559390925287905281546001600160a01b0319161790558361063e81611143565b9450505050808061064e90610fda565b9150506104d9565b5050505050565b60008151116106b05760405162461bcd60e51b815260206004820152602b60248201526000805160206113d983398151915260448201526a1858d95d081d1bc818dd5d60aa1b606482015260840161037e565b60008051602061134d8339815191526001600160a01b0383166107185760405162461bcd60e51b815260206004820152602c602482015260008051602061139583398151915260448201526b65206164647265737328302960a01b606482015260840161037e565b6001600160a01b0383166000908152600182016020526040812054906001600160601b038216900361074e5761074e8285610afb565b60005b835181101561065657600084828151811061076e5761076e610f98565b6020908102919091018101516001600160e01b031981166000908152918690526040909120549091506001600160a01b0390811690871681036108195760405162461bcd60e51b815260206004820152603860248201527f4c69624469616d6f6e644375743a2043616e2774207265706c6163652066756e60448201527f6374696f6e20776974682073616d652066756e6374696f6e0000000000000000606482015260840161037e565b610824858284610b65565b6001600160e01b0319821660008181526020878152604080832080546001600160a01b03908116600160a01b6001600160601b038c16021782558c168085526001808c0185529285208054938401815585528385206008840401805463ffffffff60079095166004026101000a948502191660e08a901c94909402939093179092559390925287905281546001600160a01b031916179055836108c681611143565b945050505080806108d690610fda565b915050610751565b60008151116109315760405162461bcd60e51b815260206004820152602b60248201526000805160206113d983398151915260448201526a1858d95d081d1bc818dd5d60aa1b606482015260840161037e565b60008051602061134d8339815191526001600160a01b038316156109bd5760405162461bcd60e51b815260206004820152603660248201527f4c69624469616d6f6e644375743a2052656d6f7665206661636574206164647260448201527f657373206d757374206265206164647265737328302900000000000000000000606482015260840161037e565b60005b8251811015610a2f5760008382815181106109dd576109dd610f98565b6020908102919091018101516001600160e01b031981166000908152918590526040909120549091506001600160a01b0316610a1a848284610b65565b50508080610a2790610fda565b9150506109c0565b50505050565b6001600160a01b038216610a47575050565b610a698260405180606001604052806028815260200161136d60289139610f28565b600080836001600160a01b031683604051610a849190611171565b600060405180830381855af49150503d8060008114610abf576040519150601f19603f3d011682016040523d82523d6000602084013e610ac4565b606091505b509150915081610a2f57805115610ade5780518082602001fd5b838360405163192105d760e01b815260040161037e92919061118d565b610b1d816040518060600160405280602481526020016113b560249139610f28565b6002820180546001600160a01b0390921660008181526001948501602090815260408220860185905594840183559182529290200180546001600160a01b0319169091179055565b6001600160a01b038216610be15760405162461bcd60e51b815260206004820152603760248201527f4c69624469616d6f6e644375743a2043616e27742072656d6f76652066756e6360448201527f74696f6e207468617420646f65736e2774206578697374000000000000000000606482015260840161037e565b306001600160a01b03831603610c505760405162461bcd60e51b815260206004820152602e60248201527f4c69624469616d6f6e644375743a2043616e27742072656d6f766520696d6d7560448201526d3a30b1363290333ab731ba34b7b760911b606482015260840161037e565b6001600160e01b03198116600090815260208481526040808320546001600160a01b0386168452600180880190935290832054600160a01b9091046001600160601b03169291610c9f916111b9565b9050808214610d91576001600160a01b03841660009081526001860160205260408120805483908110610cd457610cd4610f98565b600091825260208083206008830401546001600160a01b038916845260018a019091526040909220805460079092166004026101000a90920460e01b925082919085908110610d2557610d25610f98565b600091825260208083206008830401805463ffffffff60079094166004026101000a938402191660e09590951c929092029390931790556001600160e01b03199290921682528690526040902080546001600160a01b0316600160a01b6001600160601b038516021790555b6001600160a01b03841660009081526001860160205260409020805480610dba57610dba6111d2565b60008281526020808220600860001990940193840401805463ffffffff600460078716026101000a0219169055919092556001600160e01b03198516825286905260408120819055819003610656576002850154600090610e1d906001906111b9565b6001600160a01b0386166000908152600180890160205260409091200154909150808214610ecc576000876002018381548110610e5c57610e5c610f98565b6000918252602090912001546002890180546001600160a01b039092169250829184908110610e8d57610e8d610f98565b600091825260208083209190910180546001600160a01b0319166001600160a01b03948516179055929091168152600189810190925260409020018190555b86600201805480610edf57610edf6111d2565b60008281526020808220830160001990810180546001600160a01b03191690559092019092556001600160a01b0388168252600189810190915260408220015550505050505050565b813b8181610a2f5760405162461bcd60e51b815260040161037e91906111e8565b80516001600160a01b0381168114610f6057600080fd5b919050565b60008060408385031215610f7857600080fd5b610f8183610f49565b9150610f8f60208401610f49565b90509250929050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052602160045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201610fec57610fec610fc4565b5060010190565b60005b8381101561100e578181015183820152602001610ff6565b50506000910152565b6000815180845261102f816020860160208601610ff3565b601f01601f19169290920160200192915050565b60006060808301818452808751808352608092508286019150828160051b8701016020808b0160005b8481101561111357898403607f19018652815180516001600160a01b031685528381015189860190600381106110b257634e487b7160e01b600052602160045260246000fd5b868601526040918201519186018a905281519081905290840190600090898701905b808310156110fe5783516001600160e01b03191682529286019260019290920191908601906110d4565b5097850197955050509082019060010161106c565b50506001600160a01b038a169088015286810360408801526111358189611017565b9a9950505050505050505050565b60006001600160601b038281166002600160601b0319810161116757611167610fc4565b6001019392505050565b60008251611183818460208701610ff3565b9190910192915050565b6001600160a01b03831681526040602082018190526000906111b190830184611017565b949350505050565b818103818111156111cc576111cc610fc4565b92915050565b634e487b7160e01b600052603160045260246000fd5b6020815260006111fb6020830184611017565b9392505050565b61013c806112116000396000f3fe60806040523661000b57005b600080357fffffffff000000000000000000000000000000000000000000000000000000001681527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c6020819052604090912054819073ffffffffffffffffffffffffffffffffffffffff16806100e2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4469616d6f6e643a2046756e6374696f6e20646f6573206e6f74206578697374604482015260640160405180910390fd5b3660008037600080366000845af43d6000803e808015610101573d6000f35b3d6000fdfea2646970667358221220f2d88bf7a2e1e9674b2f27154dbc8c4da71476375a292d2d7b2f87f1886d62d164736f6c63430008130033c8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c4c69624469616d6f6e644375743a205f696e6974206164647265737320686173206e6f20636f64654c69624469616d6f6e644375743a204164642066616365742063616e277420624c69624469616d6f6e644375743a204e657720666163657420686173206e6f20636f64654c69624469616d6f6e644375743a204e6f2073656c6563746f727320696e20660000000000000000000000000000000022d4802541320db7f22693405db1942200000000000000000000000031075d8c42f48ba7073d1c3248e59559bef3ddcf

Deployed Bytecode

0x60806040523661000b57005b600080357fffffffff000000000000000000000000000000000000000000000000000000001681527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c6020819052604090912054819073ffffffffffffffffffffffffffffffffffffffff16806100e2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4469616d6f6e643a2046756e6374696f6e20646f6573206e6f74206578697374604482015260640160405180910390fd5b3660008037600080366000845af43d6000803e808015610101573d6000f35b3d6000fdfea2646970667358221220f2d88bf7a2e1e9674b2f27154dbc8c4da71476375a292d2d7b2f87f1886d62d164736f6c63430008130033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000022d4802541320db7f22693405db1942200000000000000000000000031075d8c42f48ba7073d1c3248e59559bef3ddcf

-----Decoded View---------------
Arg [0] : _owner (address): 0x0000000022D4802541320DB7F22693405Db19422
Arg [1] : _diamondCutFacet (address): 0x31075d8c42F48BA7073D1C3248e59559bEF3dDcF

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000022d4802541320db7f22693405db19422
Arg [1] : 00000000000000000000000031075d8c42f48ba7073d1c3248e59559bef3ddcf


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

OVERVIEW

DegenX is a chain-agnostic Ecosystem, controlled by a DAO, which provides complementary DeFi products to get DeFi developers, product owners and project managers a supportive entry to kick-off their DeFi visions.

Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.