Latest 25 from a total of 259 transactions
| Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Approve | 23676356 | 10 days ago | IN | 0 ETH | 0.00003316 | ||||
| Approve | 23523753 | 32 days ago | IN | 0 ETH | 0.00000901 | ||||
| Approve | 23503199 | 35 days ago | IN | 0 ETH | 0.00000556 | ||||
| Transfer | 23503172 | 35 days ago | IN | 0 ETH | 0.00001595 | ||||
| Approve | 23455084 | 41 days ago | IN | 0 ETH | 0.00002966 | ||||
| Transfer | 23455031 | 41 days ago | IN | 0 ETH | 0.0000312 | ||||
| Approve | 23435217 | 44 days ago | IN | 0 ETH | 0.00001154 | ||||
| Approve | 23434157 | 44 days ago | IN | 0 ETH | 0.00004948 | ||||
| Approve | 23414380 | 47 days ago | IN | 0 ETH | 0.00005109 | ||||
| Approve | 23397313 | 49 days ago | IN | 0 ETH | 0.00002302 | ||||
| Approve | 23397271 | 49 days ago | IN | 0 ETH | 0.00002331 | ||||
| Transfer | 23383589 | 51 days ago | IN | 0 ETH | 0.00006154 | ||||
| Transfer | 23312739 | 61 days ago | IN | 0 ETH | 0.00001304 | ||||
| Transfer | 23288226 | 65 days ago | IN | 0 ETH | 0.00002463 | ||||
| Transfer | 23288170 | 65 days ago | IN | 0 ETH | 0.00002021 | ||||
| Transfer | 23232974 | 72 days ago | IN | 0 ETH | 0.00006791 | ||||
| Transfer | 23232928 | 72 days ago | IN | 0 ETH | 0.00007867 | ||||
| Approve | 23203253 | 77 days ago | IN | 0 ETH | 0.00001074 | ||||
| Transfer | 23195984 | 78 days ago | IN | 0 ETH | 0.00015838 | ||||
| Approve | 23057912 | 97 days ago | IN | 0 ETH | 0.00001711 | ||||
| Approve | 23047108 | 98 days ago | IN | 0 ETH | 0.0002593 | ||||
| Approve | 23047029 | 98 days ago | IN | 0 ETH | 0.00002722 | ||||
| Approve | 23046978 | 98 days ago | IN | 0 ETH | 0.00004254 | ||||
| Approve | 22996758 | 105 days ago | IN | 0 ETH | 0.00004225 | ||||
| Approve | 22990180 | 106 days ago | IN | 0 ETH | 0.00005403 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
DegenX
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 99999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.19;
import { Diamond } from "./Diamond.sol";
/// @title DegenX Ecosystem Diamond
/// @author Daniel <[email protected]>
/// @custom:version 1.0.0
contract DegenX is Diamond {
constructor(address _owner, address _diamondCutFacet) payable Diamond(_owner, _diamondCutFacet) {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 * * Implementation of a diamond. /******************************************************************************/ import { LibAccessControlEnumerable } from "./libraries/LibAccessControlEnumerable.sol"; import { Constants } from "./helpers/Constants.sol"; import { LibDiamond } from "./libraries/LibDiamond.sol"; import { IDiamondCut } from "./interfaces/IDiamondCut.sol"; /// @custom:version 1.0.0 contract Diamond { constructor(address _owner, address _diamondCutFacet) payable { LibDiamond.setContractOwner(_owner); // Add the diamondCut external function from the diamondCutFacet IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1); bytes4[] memory functionSelectors = new bytes4[](1); functionSelectors[0] = IDiamondCut.diamondCut.selector; cut[0] = IDiamondCut.FacetCut({ facetAddress: _diamondCutFacet, action: IDiamondCut.FacetCutAction.Add, functionSelectors: functionSelectors }); LibDiamond.diamondCut(cut, address(0), ""); } // Find facet for function that is called and execute the // function if a facet is found and return any value. fallback() external payable { LibDiamond.DiamondStorage storage ds; bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION; // get diamond storage assembly { ds.slot := position } // get facet from function selector address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress; require(facet != address(0), "Diamond: Function does not exist"); // Execute external function from facet using delegatecall and return any value. assembly { // copy function selector and any arguments calldatacopy(0, 0, calldatasize()) // execute function call using the facet let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } receive() external payable {} }
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
library Constants {
/*-------------------------------- Role --------------------------------*/
// 0x0000000000000000000000000000000000000000000000000000000000000000
bytes32 constant DEFAULT_ADMIN_ROLE = 0x00;
// 0xa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775
bytes32 constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
// 0xfc425f2263d0df187444b70e47283d622c70181c5baebb1306a01edba1ce184c
bytes32 constant DEPLOYER_ROLE = keccak256("DEPLOYER_ROLE");
// 0x6c0757dc3e6b28b2580c03fd9e96c274acf4f99d91fbec9b418fa1d70604ff1c
bytes32 constant FEE_MANAGER_ROLE = keccak256("FEE_MANAGER_ROLE");
// 0x9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6
bytes32 constant MINTER_ROLE = keccak256("MINTER_ROLE");
// 0x3c11d16cbaffd01df69ce1c404f6340ee057498f5f00246190ea54220576a848
bytes32 constant BURNER_ROLE = keccak256("BURNER_ROLE");
// 0x63eb04268b235ac1afacf3bcf4b19c5c175d0417a1555fb3ff79ae190f71ee7c
bytes32 constant FEE_STORE_MANAGER_ROLE = keccak256("FEE_STORE_MANAGER_ROLE");
// 0x77f52ccf2f32e71a0cff8f14ad8c8303b7d2e4c7609b8fba963114f4db2af767
bytes32 constant FEE_DISTRIBUTOR_PUSH_ROLE = keccak256("FEE_DISTRIBUTOR_PUSH_ROLE");
// 0xe85d5f1f8338cb18f500856d1568d0f3b0d0971f25b3ccd134475e991354edbf
bytes32 constant FEE_DISTRIBUTOR_MANAGER = keccak256("FEE_DISTRIBUTOR_MANAGER");
/*----------------------------------------------------------------------*/
/*------------------------------- Fee ID -------------------------------*/
// 0xacfc432e98ad100d9f8c385f3782bc88a17e1de7e53f69678cbcc41e8ffe72b0
bytes32 constant ERC20_MARKETING_FEE = keccak256("ERC20_MARKETING_FEE");
// 0x6b78196f16f828b24a5a6584d4a1bcc5ce2f3154ba57839db273e6a4ebbe92c2
bytes32 constant ERC20_REWARD_FEE = keccak256("ERC20_REWARD_FEE");
// 0x6e3678bee6f77c8a6179922c9a518b08407e6d9d2593ac683a87c979c8b31a12
bytes32 constant ERC20_PLATFORM_FEE = keccak256("ERC20_PLATFORM_FEE");
// 0x6e2178bb28988b4c92cd3092e9e342e7639bfda2f68a02ac478cb084759607cf
bytes32 constant ERC20_DEVELOPER_FEE = keccak256("ERC20_DEVELOPER_FEE");
/*----------------------------------------------------------------------*/
/*--------------------------- Relayer Actions --------------------------*/
// 0xf145583e6e33d9da99af75b579493b11db4229a339336b82c748312f152b29a9
bytes32 constant RELAYER_ACTION_DEPLOY_FEES = keccak256("RELAYER_ACTION_DEPLOY_FEES");
// 0xf375f410a0dc135af0d9a16e273eac999064981d8813a68af762e93567a43aac
bytes32 constant RELAYER_ACTION_DEPLOY_FEES_CONFIRM = keccak256("RELAYER_ACTION_DEPLOY_FEES_CONFIRM");
// 0x9d62257b25ea052fe7cd5123fd6b791268b8673b073aae5de4a823c4dc7d7607
bytes32 constant RELAYER_ACTION_SEND_FEES = keccak256("RELAYER_ACTION_SEND_FEES");
/*----------------------------------------------------------------------*/
}// SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.0; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external; }
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
library LibAccessControlEnumerable {
using EnumerableSet for EnumerableSet.AddressSet;
bytes32 constant ACCESS_CONTROL_STORAGE_POSITION = keccak256("degenx.access.control.storage");
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
struct AccessControlStorage {
mapping(bytes32 => RoleData) roles;
mapping(bytes32 => EnumerableSet.AddressSet) roleMembers;
mapping(bytes4 => bool) supportedInterfaces;
}
function accessControlStorage() internal pure returns (AccessControlStorage storage acs) {
bytes32 position = ACCESS_CONTROL_STORAGE_POSITION;
assembly {
acs.slot := position
}
}
function checkRole(bytes32 role) internal view {
checkRole(role, msg.sender);
}
function checkRole(bytes32 role, address account) internal view {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
function hasRole(bytes32 role, address account) internal view returns (bool) {
AccessControlStorage storage acs = accessControlStorage();
return acs.roles[role].members[account];
}
function grantRole(bytes32 role, address account) internal {
AccessControlStorage storage acs = accessControlStorage();
if (!hasRole(role, account)) {
acs.roles[role].members[account] = true;
emit RoleGranted(role, account, msg.sender);
acs.roleMembers[role].add(account);
}
}
function revokeRole(bytes32 role, address account) internal {
AccessControlStorage storage acs = accessControlStorage();
if (hasRole(role, account)) {
acs.roles[role].members[account] = false;
emit RoleRevoked(role, account, msg.sender);
acs.roleMembers[role].remove(account);
}
}
function setRoleAdmin(bytes32 role, bytes32 adminRole) internal {
AccessControlStorage storage acs = accessControlStorage();
bytes32 previousAdminRole = acs.roles[role].adminRole;
acs.roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
}// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ import { IDiamondCut } from "../interfaces/IDiamondCut.sol"; // Remember to add the loupe functions from DiamondLoupeFacet to the diamond. // The loupe functions are required by the EIP2535 Diamonds standard error InitializationFunctionReverted(address _initializationContractAddress, bytes _calldata); library LibDiamond { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct FacetAddressAndPosition { address facetAddress; uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array } struct FacetFunctionSelectors { bytes4[] functionSelectors; uint256 facetAddressPosition; // position of facetAddress in facetAddresses array } struct DiamondStorage { // maps function selector to the facet address and // the position of the selector in the facetFunctionSelectors.selectors array mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition; // maps facet addresses to function selectors mapping(address => FacetFunctionSelectors) facetFunctionSelectors; // facet addresses address[] facetAddresses; // Used to query if a contract implements an interface. // Used to implement ERC-165. mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { DiamondStorage storage ds = diamondStorage(); address previousOwner = ds.contractOwner; ds.contractOwner = _newOwner; emit OwnershipTransferred(previousOwner, _newOwner); } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = diamondStorage().contractOwner; } function enforceIsContractOwner() internal view { require(msg.sender == diamondStorage().contractOwner, "LibDiamond: Must be contract owner"); } event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); // Internal function version of diamondCut function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal { for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) { IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action; if (action == IDiamondCut.FacetCutAction.Add) { addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Replace) { replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Remove) { removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else { revert("LibDiamondCut: Incorrect FacetCutAction"); } } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists"); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; } } function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress != _facetAddress, "LibDiamondCut: Can't replace function with same function"); removeFunction(ds, oldFacetAddress, selector); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; } } function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); // if function does not exist then do nothing and return require(_facetAddress == address(0), "LibDiamondCut: Remove facet address must be address(0)"); for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; removeFunction(ds, oldFacetAddress, selector); } } function addFacet(DiamondStorage storage ds, address _facetAddress) internal { enforceHasContractCode(_facetAddress, "LibDiamondCut: New facet has no code"); ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length; ds.facetAddresses.push(_facetAddress); } function addFunction(DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress) internal { ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition; ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector); ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress; } function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal { require(_facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist"); // an immutable function is a function defined directly in a diamond require(_facetAddress != address(this), "LibDiamondCut: Can't remove immutable function"); // replace selector with last selector, then delete last selector uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition; uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1; // if not the same then replace _selector with lastSelector if (selectorPosition != lastSelectorPosition) { bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition]; ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector; ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition); } // delete the last selector ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop(); delete ds.selectorToFacetAndPosition[_selector]; // if no more selectors for facet address then delete the facet address if (lastSelectorPosition == 0) { // replace facet address with last facet address and delete last facet address uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1; uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; if (facetAddressPosition != lastFacetAddressPosition) { address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition]; ds.facetAddresses[facetAddressPosition] = lastFacetAddress; ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition; } ds.facetAddresses.pop(); delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; } } function initializeDiamondCut(address _init, bytes memory _calldata) internal { if (_init == address(0)) { return; } enforceHasContractCode(_init, "LibDiamondCut: _init address has no code"); (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length > 0) { // bubble up error /// @solidity memory-safe-assembly assembly { let returndata_size := mload(error) revert(add(32, error), returndata_size) } } else { revert InitializationFunctionReverted(_init, _calldata); } } } function enforceHasContractCode(address _contract, string memory _errorMessage) internal view { uint256 contractSize; assembly { contractSize := extcodesize(_contract) } require(contractSize > 0, _errorMessage); } }
{
"optimizer": {
"enabled": true,
"runs": 99999
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"metadata": {
"useLiteralContent": true
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_diamondCutFacet","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"_initializationContractAddress","type":"address"},{"internalType":"bytes","name":"_calldata","type":"bytes"}],"name":"InitializationFunctionReverted","type":"error"},{"stateMutability":"payable","type":"fallback"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
60806040526040516113f93803806113f983398101604081905261002291610f65565b818161002d8261013a565b604080516001808252818301909252600091816020015b604080516060808201835260008083526020830152918101919091528152602001906001900390816100445750506040805160018082528183019092529192506000919060208083019080368337019050509050631f931c1c60e01b816000815181106100b3576100b3610f98565b6001600160e01b031990921660209283029190910182015260408051606081019091526001600160a01b038516815290810160008152602001828152508260008151811061010357610103610f98565b602002602001018190525061012f826000604051806020016040528060008152506101bd60201b60201c565b505050505050611202565b7fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c132080546001600160a01b031981166001600160a01b0384811691821790935560405160008051602061134d833981519152939092169182907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a3505050565b60005b835181101561039a5760008482815181106101dd576101dd610f98565b6020026020010151602001519050600060028111156101fe576101fe610fae565b81600281111561021057610210610fae565b036102645761025f85838151811061022a5761022a610f98565b60200260200101516000015186848151811061024857610248610f98565b6020026020010151604001516103e560201b60201c565b610387565b600181600281111561027857610278610fae565b036102c75761025f85838151811061029257610292610f98565b6020026020010151600001518684815181106102b0576102b0610f98565b60200260200101516040015161065d60201b60201c565b60028160028111156102db576102db610fae565b0361032a5761025f8583815181106102f5576102f5610f98565b60200260200101516000015186848151811061031357610313610f98565b6020026020010151604001516108de60201b60201c565b60405162461bcd60e51b815260206004820152602760248201527f4c69624469616d6f6e644375743a20496e636f727265637420466163657443756044820152663a20b1ba34b7b760c91b60648201526084015b60405180910390fd5b508061039281610fda565b9150506101c0565b507f8faa70878671ccd212d20771b795c50af8fd3ff6cf27f4bde57e5d4de0aeb6738383836040516103ce93929190611043565b60405180910390a16103e08282610a35565b505050565b60008151116104385760405162461bcd60e51b815260206004820152602b60248201526000805160206113d983398151915260448201526a1858d95d081d1bc818dd5d60aa1b606482015260840161037e565b60008051602061134d8339815191526001600160a01b0383166104a05760405162461bcd60e51b815260206004820152602c602482015260008051602061139583398151915260448201526b65206164647265737328302960a01b606482015260840161037e565b6001600160a01b0383166000908152600182016020526040812054906001600160601b03821690036104d6576104d68285610afb565b60005b83518110156106565760008482815181106104f6576104f6610f98565b6020908102919091018101516001600160e01b031981166000908152918690526040909120549091506001600160a01b0316801561059c5760405162461bcd60e51b815260206004820152603560248201527f4c69624469616d6f6e644375743a2043616e2774206164642066756e6374696f60448201527f6e207468617420616c7265616479206578697374730000000000000000000000606482015260840161037e565b6001600160e01b0319821660008181526020878152604080832080546001600160a01b03908116600160a01b6001600160601b038c16021782558c168085526001808c0185529285208054938401815585528385206008840401805463ffffffff60079095166004026101000a948502191660e08a901c94909402939093179092559390925287905281546001600160a01b0319161790558361063e81611143565b9450505050808061064e90610fda565b9150506104d9565b5050505050565b60008151116106b05760405162461bcd60e51b815260206004820152602b60248201526000805160206113d983398151915260448201526a1858d95d081d1bc818dd5d60aa1b606482015260840161037e565b60008051602061134d8339815191526001600160a01b0383166107185760405162461bcd60e51b815260206004820152602c602482015260008051602061139583398151915260448201526b65206164647265737328302960a01b606482015260840161037e565b6001600160a01b0383166000908152600182016020526040812054906001600160601b038216900361074e5761074e8285610afb565b60005b835181101561065657600084828151811061076e5761076e610f98565b6020908102919091018101516001600160e01b031981166000908152918690526040909120549091506001600160a01b0390811690871681036108195760405162461bcd60e51b815260206004820152603860248201527f4c69624469616d6f6e644375743a2043616e2774207265706c6163652066756e60448201527f6374696f6e20776974682073616d652066756e6374696f6e0000000000000000606482015260840161037e565b610824858284610b65565b6001600160e01b0319821660008181526020878152604080832080546001600160a01b03908116600160a01b6001600160601b038c16021782558c168085526001808c0185529285208054938401815585528385206008840401805463ffffffff60079095166004026101000a948502191660e08a901c94909402939093179092559390925287905281546001600160a01b031916179055836108c681611143565b945050505080806108d690610fda565b915050610751565b60008151116109315760405162461bcd60e51b815260206004820152602b60248201526000805160206113d983398151915260448201526a1858d95d081d1bc818dd5d60aa1b606482015260840161037e565b60008051602061134d8339815191526001600160a01b038316156109bd5760405162461bcd60e51b815260206004820152603660248201527f4c69624469616d6f6e644375743a2052656d6f7665206661636574206164647260448201527f657373206d757374206265206164647265737328302900000000000000000000606482015260840161037e565b60005b8251811015610a2f5760008382815181106109dd576109dd610f98565b6020908102919091018101516001600160e01b031981166000908152918590526040909120549091506001600160a01b0316610a1a848284610b65565b50508080610a2790610fda565b9150506109c0565b50505050565b6001600160a01b038216610a47575050565b610a698260405180606001604052806028815260200161136d60289139610f28565b600080836001600160a01b031683604051610a849190611171565b600060405180830381855af49150503d8060008114610abf576040519150601f19603f3d011682016040523d82523d6000602084013e610ac4565b606091505b509150915081610a2f57805115610ade5780518082602001fd5b838360405163192105d760e01b815260040161037e92919061118d565b610b1d816040518060600160405280602481526020016113b560249139610f28565b6002820180546001600160a01b0390921660008181526001948501602090815260408220860185905594840183559182529290200180546001600160a01b0319169091179055565b6001600160a01b038216610be15760405162461bcd60e51b815260206004820152603760248201527f4c69624469616d6f6e644375743a2043616e27742072656d6f76652066756e6360448201527f74696f6e207468617420646f65736e2774206578697374000000000000000000606482015260840161037e565b306001600160a01b03831603610c505760405162461bcd60e51b815260206004820152602e60248201527f4c69624469616d6f6e644375743a2043616e27742072656d6f766520696d6d7560448201526d3a30b1363290333ab731ba34b7b760911b606482015260840161037e565b6001600160e01b03198116600090815260208481526040808320546001600160a01b0386168452600180880190935290832054600160a01b9091046001600160601b03169291610c9f916111b9565b9050808214610d91576001600160a01b03841660009081526001860160205260408120805483908110610cd457610cd4610f98565b600091825260208083206008830401546001600160a01b038916845260018a019091526040909220805460079092166004026101000a90920460e01b925082919085908110610d2557610d25610f98565b600091825260208083206008830401805463ffffffff60079094166004026101000a938402191660e09590951c929092029390931790556001600160e01b03199290921682528690526040902080546001600160a01b0316600160a01b6001600160601b038516021790555b6001600160a01b03841660009081526001860160205260409020805480610dba57610dba6111d2565b60008281526020808220600860001990940193840401805463ffffffff600460078716026101000a0219169055919092556001600160e01b03198516825286905260408120819055819003610656576002850154600090610e1d906001906111b9565b6001600160a01b0386166000908152600180890160205260409091200154909150808214610ecc576000876002018381548110610e5c57610e5c610f98565b6000918252602090912001546002890180546001600160a01b039092169250829184908110610e8d57610e8d610f98565b600091825260208083209190910180546001600160a01b0319166001600160a01b03948516179055929091168152600189810190925260409020018190555b86600201805480610edf57610edf6111d2565b60008281526020808220830160001990810180546001600160a01b03191690559092019092556001600160a01b0388168252600189810190915260408220015550505050505050565b813b8181610a2f5760405162461bcd60e51b815260040161037e91906111e8565b80516001600160a01b0381168114610f6057600080fd5b919050565b60008060408385031215610f7857600080fd5b610f8183610f49565b9150610f8f60208401610f49565b90509250929050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052602160045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201610fec57610fec610fc4565b5060010190565b60005b8381101561100e578181015183820152602001610ff6565b50506000910152565b6000815180845261102f816020860160208601610ff3565b601f01601f19169290920160200192915050565b60006060808301818452808751808352608092508286019150828160051b8701016020808b0160005b8481101561111357898403607f19018652815180516001600160a01b031685528381015189860190600381106110b257634e487b7160e01b600052602160045260246000fd5b868601526040918201519186018a905281519081905290840190600090898701905b808310156110fe5783516001600160e01b03191682529286019260019290920191908601906110d4565b5097850197955050509082019060010161106c565b50506001600160a01b038a169088015286810360408801526111358189611017565b9a9950505050505050505050565b60006001600160601b038281166002600160601b0319810161116757611167610fc4565b6001019392505050565b60008251611183818460208701610ff3565b9190910192915050565b6001600160a01b03831681526040602082018190526000906111b190830184611017565b949350505050565b818103818111156111cc576111cc610fc4565b92915050565b634e487b7160e01b600052603160045260246000fd5b6020815260006111fb6020830184611017565b9392505050565b61013c806112116000396000f3fe60806040523661000b57005b600080357fffffffff000000000000000000000000000000000000000000000000000000001681527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c6020819052604090912054819073ffffffffffffffffffffffffffffffffffffffff16806100e2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4469616d6f6e643a2046756e6374696f6e20646f6573206e6f74206578697374604482015260640160405180910390fd5b3660008037600080366000845af43d6000803e808015610101573d6000f35b3d6000fdfea2646970667358221220f2d88bf7a2e1e9674b2f27154dbc8c4da71476375a292d2d7b2f87f1886d62d164736f6c63430008130033c8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c4c69624469616d6f6e644375743a205f696e6974206164647265737320686173206e6f20636f64654c69624469616d6f6e644375743a204164642066616365742063616e277420624c69624469616d6f6e644375743a204e657720666163657420686173206e6f20636f64654c69624469616d6f6e644375743a204e6f2073656c6563746f727320696e20660000000000000000000000000000000022d4802541320db7f22693405db1942200000000000000000000000031075d8c42f48ba7073d1c3248e59559bef3ddcf
Deployed Bytecode
0x60806040523661000b57005b600080357fffffffff000000000000000000000000000000000000000000000000000000001681527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c6020819052604090912054819073ffffffffffffffffffffffffffffffffffffffff16806100e2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4469616d6f6e643a2046756e6374696f6e20646f6573206e6f74206578697374604482015260640160405180910390fd5b3660008037600080366000845af43d6000803e808015610101573d6000f35b3d6000fdfea2646970667358221220f2d88bf7a2e1e9674b2f27154dbc8c4da71476375a292d2d7b2f87f1886d62d164736f6c63430008130033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000022d4802541320db7f22693405db1942200000000000000000000000031075d8c42f48ba7073d1c3248e59559bef3ddcf
-----Decoded View---------------
Arg [0] : _owner (address): 0x0000000022D4802541320DB7F22693405Db19422
Arg [1] : _diamondCutFacet (address): 0x31075d8c42F48BA7073D1C3248e59559bEF3dDcF
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000022d4802541320db7f22693405db19422
Arg [1] : 00000000000000000000000031075d8c42f48ba7073d1c3248e59559bef3ddcf
Loading...
Loading
Loading...
Loading
OVERVIEW
DegenX is a chain-agnostic Ecosystem, controlled by a DAO, which provides complementary DeFi products to get DeFi developers, product owners and project managers a supportive entry to kick-off their DeFi visions.Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.